Equality of Stanley Symmetric Functions

Ryan Ward Advisor: Peter McNamara
Bucknell University

Formal Definition

For a permutation w, we define the corresponding Stanley symmetric function in m variables as:

$$
F_{w}\left(x_{1}, \ldots, x_{m}\right)=\sum_{a \in R(w)} Q_{D(a), l(w)}\left(x_{1}, \ldots, x_{m}\right)
$$

where $R(w)$ is the set of reduced words of $w, D(a)$ is the descent set of $a, l(w)$ is the length (number of inversions) of w, and Q 's are fundamental quasisymmetric functions.

Goal

Determine when $F_{w_{1}}=F_{w_{2}}$.

Equality Condition

$F_{w_{1}}=F_{w_{2}}$ if and only if $D\left(R\left(w_{1}\right)\right)=D\left(R\left(w_{2}\right)\right)$, where $D(R(w))=\{D(a) \mid a \in R(w)\}$.

This allows us to only look at the descent sets of the reduced words to check for Stanley symmetric function equality.

Example

Consider $w_{1}=4132 \in S_{4}$. We have:

$$
\begin{aligned}
& R(4132)=\left\{\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3}, \sigma_{3} \sigma_{2} \sigma_{3} \sigma_{1}, \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right\} \\
& D(R(4132))=\{(1,2),(1,3),(2,3)\} \\
& F_{4132}=Q_{(1,2), 4}+Q_{(1,3), 4}+Q_{(2,3), 4}
\end{aligned}
$$

Now consider $25134 \in S_{5}$. We have:

$$
\begin{aligned}
& R(25134)=\left\{\sigma_{4} \sigma_{3} \sigma_{1} \sigma_{2}, \sigma_{4} \sigma_{1} \sigma_{3} \sigma_{2}, \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{2}\right\} \\
& D(R(25134))=\{(1,2),(1,3),(2,3)\}
\end{aligned}
$$

Since $D(R(4132))=D(R(25134))$, we have $F_{4132}=F_{25134}$.

Note: If $F_{w_{1}}=F_{w_{2}}$, then it is not necessarily the case that $w_{1}, w_{2} \in S_{n}$. It is the case that if $F_{w_{1}}=F_{w_{2}}$, then $l\left(w_{1}\right)=l\left(w_{2}\right)$.

Permutation Diagrams

Every permutation $w \in S_{n}$ has a corresponding diagram, denoted $D(w)$. The construction of $D(412635)$ is shown below:

If $w \in S_{n}$ is 321-avoiding, then $D(w)$ is a skew shape.

Known Equalities

Given $w_{1}=\left(x_{1}, \ldots, x_{n}\right) \in S_{n}$ and $w_{2}=\left(y_{1}, \ldots, y_{m}\right) \in S_{m}$, we define $w_{1} \rightarrow w_{2}$ as

$$
w_{1} \rightarrow w_{2}:=\left(x_{1}, \ldots, x_{n},\left(y_{1}+n\right), \ldots,\left(y_{m}+n\right)\right) \in S_{n+m}
$$

Theorem: $F_{w_{1} \rightarrow w_{2}}=F_{w_{1}} F_{w_{2}}$. This corresponds to combining the diagrams $D\left(w_{1}\right)$ and $D\left(w_{2}\right)$ at their tips.

Given $w \in S_{n}$, we define $w^{*}:=w_{0} w^{-1} w_{0}$, where w_{0} is the element of maximal length in S_{n}.

Theorem: For all $w \in S_{n}$, we have $F_{w}=F_{w^{*}}$. If w is 321-avoiding, this corresponds to rotating the diagram $D(w)$ 180°.

Conjectures

We have that the following Stanley symmetric functions are all equivalent:

Conjecture: If $D\left(w_{1}\right)$ and $D\left(w_{2}\right)$ are equivalent under row and column permutations, then $F_{w_{1}}=F_{w_{2}}$. We know the converse is false.

We are also interested in cases where $F_{w_{1} \leftarrow w_{2}}=F_{w_{3} \leftarrow w_{4}}$.
Conjecture: If $D\left(w_{1}\right)$ and $D\left(w_{2}\right)$ are equivalent under row and column permutations and $w_{1}, w_{2} \in S_{n}$, then
$F_{w_{1} \leftarrow w}=F_{w_{2} \leftarrow w}$.

$=F_{2431 \leftarrow 4123}$

Question: How are Stanley symmetric functions related to skew Schur functions? In particular, for a given $w \in S_{n}$, we want to know if $F_{w}=F_{w^{\prime}}$ for some w^{\prime} such that $D\left(w^{\prime}\right)$ is a skew shape.

References

- Richard P. Stanley. On the number of reduced
decompositions of elements of Coxeter groups. European J. Combin., 5(4):359-372, 1984.
- Sergey Formin, Curtis Greene, Victor Reiner, and Mark Shimozono. Balanced labellings and Schubert polynomials. European J. Combin., 18(4):373-389, 1997.

