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Abstract

Let V be a 3-dimensional vector space over a finite field. We show that any
irreducible subgroup of GL(V ) that arises as the automorphism group of an
abstract regular polytope preserves a nondegenerate symmetric bilinear form
on V . In particular, the only classical groups on V that arise as automorphisms
of such polytopes are the orthogonal groups.

1 Introduction

This paper is a contribution to the recent effort to determine which members of a
specific infinite family of finite simple groups can arise as the group of automorphisms
of an abstract regular polytope (which we shall henceforth refer to simply as regular
polytope). The combined results of Sjerve and Cherkassoff, and Leemans and Schulte,
for example, determine all of the finite fields Fq for which PSL(2,Fq) acts on a
regular polytope. Specifically, PSL(2,Fq) is the group of automorphisms of a regular
polytope of rank 3 if and only if q 6∈ {2, 3, 7, 9} [5], whereas only PSL(2,F11) and
PSL(2,F19) act on regular polytopes of rank 4 [2].

In this paper we examine the actions on regular polytopes of classical groups
defined on a 3-dimensional vector space V over a finite field Fq. Following the
notation of [1, Section 2.1], κ denotes a bilinear, hermitian or quadratic form on V ,
I = I(V, κ) is the group of κ-isometries of V , and Ω = Ω(V, κ) = I ′, the derived
subgroup of I. Note that if κ is identically 0 then I(V, κ) = GL(V ); otherwise κ is
assumed to be nondegenerate. We define a classical group on V to be any group G
satisfying Ω(V, κ) 6 G 6 I(V, κ) for some suitable κ.

In view of [5, 2] it seems reasonable to hope that one might find new examples of
regular polytopes P for which Γ(P), the group of automorphisms of P, is isomorphic
to a classical subgroup of GL(V ). The main result of this paper demonstrates,
however, that this is not the case:

Theorem. If P is a regular polytope such that Γ(P) is isomorphic to G 6 GL(3,Fq)
acting absolutely irreducibly on V = F 3

q , then q is odd, and there is a nondegenerate,
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symmetric bilinear form f on V such that Ω(V, f) 6 G 6 I(V, f).

Since Ω(V, f) ∼= PSL(2,Fq) for any nondegenerate, symmetric bilinear form f on
V = F 3

q , the fields Fq that admit flag-transitive actions of 3-dimensional classical
groups on regular polytopes are determined in [5, 2].

Related to our main theorem is (one aspect of) an investigation of B. Monson and
E. Schulte into modular reduction of crystallographic Coxeter groups. In [4, Section
5] they describe explicitly the modular polytopes of rank 3, and construct several
interesting families of such polytopes whose automorphism groups are isomorphic
to groups G satisfying Ω(V, f) 6 G 6 I(V, f), where V = F3

p (defined over a prime
field) and f is a symmetric bilinear form on V .

As in [2], we find it convenient to employ a purely group-theoretic description of
a group G acting on a regular polytope. A group G is a C-group if it has a generating
sequence of involutions t0, t1, . . . , tr−1 satisfying the following intersection property:

∀I, J ⊆ {0, . . . , r − 1} : 〈ti : i ∈ I〉 ∩ 〈tj : j ∈ J〉 = 〈tk : k ∈ I ∩ J〉. (1)

A C-group G is a string C-group if the following condition also holds:

∀i, j ∈ {0, . . . , r − 1} : [ti, tj ] = 1 if and only if |i− j| > 1. (2)

The integer r is the rank of G, and we write G = 〈t0, . . . , tr−1〉 to emphasize a specific
generating sequence of involutions satisfying (1) and (2). It is well known that, to
each string C-group G of rank r, one can associate an explicit regular polytope P
of rank r such that G is isomorphic to Γ(P); the reader is referred to [3, Theorem
2E11] for details of its construction.

The techniques that we utilize to prove our main result are quite different from
the approach taken in [2]. The latter makes use of a very detailed understanding of
the subgroup structure of PSL(2,Fq). Our approach is to characterize interactions
between involutions in GL(3,Fq) in terms of the geometry of the projective plane.
We show that geometric constraints arising from commutativity relations among
sequences of involutions in GL(3,Fq) satisfying (1) and (2) impose substantial re-
strictions on the groups they can generate.

2 The geometry of GL(3, Fq)

In this section we collect the geometric properties of involutions in GL(3,Fq) that
we will need in the proofs of our main results.

Let V = F 3
q be the natural vector space underlying GL(3,Fq). We shall work

with the projective plane, P(V ), using the terms point for 1-space, and line for 2-
space. Accordingly we often compute with subgroups of GL(V ) via their projective
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action on P(V ); an element or subgroup of GL(V ) fixes a point or line in this action
if it stabilizes the associated subspace of V .

If ∆ is a line in P(V ) and δ is a point on ∆, then Tδ∆ denotes the transvection
group containing those elements of GL(V ) that act as the identity on ∆ and on V/δ.
One says that δ (respectively ∆) is the center (respectively axis) of the transvection
group. Observe that Tδ∆ fixes precisely the points on ∆ and the lines through δ,
and is isomorphic to the additive group Fq. If TγΓ is another transvection group,
1 6= s ∈ Tδ∆ and 1 6= t ∈ TγΓ, then we have the following elementary observation:

[s, t] = 1 if and only if δ = γ or ∆ = Γ. (3)

If char(Fq) = 2, all involutions of GL(V ) are transvections and they are conjugate.
If char(Fq) > 2 then an involution t of GL(V ) of determinant ε ∈ {−1, 1} acts

as ε on a 1-space, δ, and as −ε on a 2-space, ∆. We adopt the same terminology
of center and axis (though here, of course, δ does not lie on ∆) and write t = tεδ∆.
Observe that tεδ∆ fixes precisely the points {δ} ∪ {γ : γ lies on ∆} and the lines
{∆} ∪ {Γ: δ lies on Γ}. If s = tε

′
γΓ, the analogue of (3) is the following:

[s, t] = 1 if and only if γ ∈ ∆ and δ ∈ Γ. (4)

3 Subgroups of GL(3, Fq) acting on polytopes

We are now ready to study flag-transitive actions of subgroups of GL(3,Fq) on
regular polytopes. Throughout this section, Fq is the finite field of q elements, V is
a 3-dimensional vector space over Fq, and G = 〈t0, . . . , tr−1〉 6 GL(V ) is a string
C-group. Our first result restricts the rank of G.

Lemma 3.1 If G 6 GL(3,Fq) is a string C-group of rank r, then r 6 4.

Proof. Let G = 〈t0, . . . , tr−1〉, let δi be the center of ti and let ∆i be its axis
(0 6 i 6 r − 1). We handle even and odd characteristic separately.
char(Fq) = 2: Since [t0, t1] 6= 1 we have δ0 6= δ1 and ∆0 6= ∆1.

First suppose that δ0 6∈ ∆1 and δ1 6∈ ∆0. Let t ∈ Tδ∆ be any involution com-
muting with t0. Then either δ0 = δ or ∆0 = ∆. In either case, it is clear that t does
not commute with t1. Hence r 6 3.

Next suppose that δ0 ∈ ∆1 (so that δ1 6∈ ∆0). If t ∈ Tδ∆ commutes with t0 and
t1 then δ = δ0 and ∆ = ∆1. Thus all involutions commuting with t0 and t1 lie in
the same (abelian) transvection group. It follows that r 6 4.

By symmetry, the same observations hold if δ0 6∈ ∆1 and δ1 ∈ ∆0.
char(Fq) > 2: Let εi denote the determinant of ti.
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First suppose that δ0 6= δ1 and ∆0 6= ∆1. Let t = tεδ∆ be any involution
commuting with both t0 and t1; then ∆ = 〈δ0, δ1〉 and δ = ∆0 ∩ ∆1. Hence there
are exactly two possibilities for t (distinguished only by determinant), and they
commute with each other. It follows that r 6 4.

It remains to consider the two cases δ0 = δ1 and ∆0 = ∆1; by duality it suffices
to consider either. Suppose that δ0 = δ1. Since [t0, t1] 6= 1 we have ∆0 6= ∆1. Let
t = tεδ∆ be any involution commuting with t0, t1 and t2. Then δ2 ∈ ∆0 (so that
δ0 6= δ2), δ0 = δ1, δ2 ∈ ∆ (so that ∆ = 〈δ0, δ2〉) and δ ∈ ∆0 ∩ ∆1 ∩ ∆2 (so that
δ = ∆0 ∩ ∆1 lies on ∆2). Since δ, δ1 and δ2 are not collinear we may fix a basis
e1, e2, e3 of V such that δ0 = δ1 = 〈e1〉, δ2 = 〈e2〉 and δ = 〈e3〉. Relative to this basis
we have

t0 =

 ε0 0 0
0 −ε0 0
0 0 −ε0

 , t1 =

 ε1 0 0
µ −ε1 0
0 0 −ε1

 and t2 =

 −ε2 0 0
0 ε2 0
0 0 −ε2


for some µ 6= 0. An easy calculation now shows that (t0t1)2 = (t2t1)2 is a nontrivial
transvection. It follows that 〈t0, t1〉 ∩ 〈t2, t1〉 contains an element of order p > 2,
which contradicts the intersection property. Hence r 6 4. �

Before proceeding to our main result we record the following elementary fact.

Lemma 3.2 Let M be the Fq-space of 3 × 3 matrices with entries in Fq, where
char(Fq) > 2, and let S be the subspace of symmetric matrices. Then, for any
involution t ∈ GL(3,Fq), {x ∈M : xt = ttrx} ∩S is a 4-dimensional subspace of S.

Proof. If t has determinant ε ∈ {−1, 1}, then there exists g ∈ GL(3,Fq) such that
gtg−1 = t0 := diag(ε,−ε,−ε). Evidently {x ∈ M : xt0 = ttr0 x} is the centraliser in
M of t0 and hence is 5-dimensional, consisting of matrices of the form ∗ 0 0

0 ∗ ∗
0 ∗ ∗

 .
It follows that {x ∈ M : xt0 = ttr0 x} ∩ S is 4-dimensional. Finally observe that
xt0 = ttr0 x if and only if (gtrxg)t = ttr(gtrxg) and that gtrxg ∈ S if and only if
x ∈ S. It follows that {x ∈ M : xt = ttrx} ∩S and {x ∈ M : xt0 = ttr0 x} ∩S have
equal dimension. �

Theorem 3.3 Let V be an Fq-space of dimension 3, and let G 6 GL(V ) be a
string C-group acting irreducibly on V . Then char(Fq) > 2 and G preserves a
nondegenerate, symmetric bilinear form f on V .
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Proof. Let G = 〈t0, . . . , tr−1〉 be a string C-group acting irreducibly on V , let δi
(respectively ∆i) denote the center (respectively axis) of ti and, if char(Fq) > 2, let
εi = det(ti). Clearly 〈t0, t1〉 stabilizes ∆0 ∩∆1 and hence acts reducibly. Therefore,
by Lemma 3.1, we may assume that r ∈ {3, 4}. We again consider even and odd
characteristic separately.

char(Fq) = 2: Following the proof of Lemma 3.1, if δ0 6∈ ∆1 and δ1 6∈ ∆0 then
r = 3. Since t0 and t2 commute, either δ0 = δ2 or ∆0 = ∆2. In the former case, G
fixes the line 〈δ0, δ1〉; in the latter G fixes the point ∆0 ∩∆1.

It remains to handle the possibilities δ0 ∈ ∆1 or δ1 ∈ ∆0; by duality it suffices
to consider just the former. Since δ2 = δ0 or ∆2 = ∆0 it is clear that 〈t0, t1, t2〉 fixes
δ0, so that r > 3. As in the proof of Lemma 3.1, t3 ∈ Tδ0∆1 , so G also fixes δ0.

Since G is presumed to act irreducibly, it follows that char(Fq) 6= 2.

char(Fq) > 2: First consider the case r = 3.
If t is an involution of GL(V ), then CGL(V )(t) acts by conjugation on the set of

involutions of GL(V ) that commute with t. An elementary computation shows that
there are two nontrivial orbits under this action, one of each determinant. Thus we
may assume that t0 = diag(ε0,−ε0,−ε0) and t2 = diag(−ε2,−ε2, ε2).

Let t be any involution. By Lemma 3.2 (following the notation set up there),
St := {x ∈ M : xt = ttrx} ∩ S is a 4-dimensional subspace of S. The space of
diagonal matrices is a 3-dimensional subspace of S so its intersection with St has
dimension at least 1. Let 0 6= d ∈ St1 be diagonal. Then d commutes with t0 and t2,
so that ttri dti = d for all i ∈ {0, 1, 2}. Hence G = 〈t0, t1, t2〉 preserves the symmetric
bilinear form on V represented by the matrix d. If d is singular, then G stabilizes
the radical (nullspace) of d and therefore acts reducibly. If d is nonsingular, then it
represents a nondegenerate form f .

Finally we consider the case r = 4.
Suppose that δ0 6= δ1 and ∆0 6= ∆1. Since t3 commutes with both t0 and t1,

we have ∆3 = 〈δ0, δ1〉 and δ3 = ∆0 ∩ ∆1. Observe that 〈t0, t1〉 fixes precisely two
subspaces, namely δ3 and ∆3, both of which are clearly fixed by t3. We may therefore
assume that 〈t0, t1, t2〉 acts irreducibly on V and hence (by the previous case) that
it preserves a nondegenerate, symmetric bilinear form on V . One easily checks now
that t3 also preserves that form.

It remains to deal with the cases δ0 = δ1 and ∆0 = ∆1. Again, by duality, it
suffices to consider either case: this time we will handle the latter. Clearly both t0
and t1 fix ∆0 = ∆1. However, since δ2 ∈ ∆0 and δ3 ∈ ∆1, we see that t2 and t3 also
fix that line. Hence G = 〈t0, t1, t2, t3〉 acts reducibly on V . �

Concluding remarks. Since every involution of PGL(3,Fq) lifts to an involution
of GL(3,Fq), one readily obtains a projective version of Theorem 3.3. In particular
no group G satisfying PSL(3,Fq) 6 G 6 PGL(3,Fq) arises as the automorphisms
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of a regular polytope. There are, however, projective semilinear groups that admit
such actions; there are various examples of regular polytopes P (of ranks 3 and 4)
such that Γ(P) ∼= PΓL(3,F9).

Finally, one appealing aspect of the approach taken here (at least to the authors)
is the interplay between algebra and projective geometry. The reliance on Lemma 3.2
is therefore somewhat vexing. It would be nice to have a purely geometric proof
of the fact that a string C-group of rank 3 acting irreducibly on F 3

q preserves a
nondegenerate symmetric bilinear form.
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