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Introduction 

In order to understand my research, one must first understand the definition of an unfolding of a given 

polyhedron. 

Def: An unfolding of a given polyhedron is a two-dimensional representation of that polyhedron created 

by cutting a number of edges of the polyhedron and flattening it into the 2-D plane so that a) the 

polyhedron is not cut into two or more pieces and b) no corner is allowed to stick out of the plane. 

As is often the case with visualization, an example will be helpful: 

 

The ultimate goal of my research was to calculate the total number of possible unfolding of various 

polyhedra (and classes of polyhedra; for instance, the right pyramids with n-sided bases). With guidance 

from Professor McNamara, I utilized two very useful techniques – Kirchoff’s Spanning Tree Theorem and 

Burnside’s Lemma – in order to calculate these numbers, some of which seem to have been previously 

unknown (or little known). 
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Choices 

When calculating the number of unfolding of a given polyhedron, there are two choices to be made, 

each of which affects the final result. 

Choice 1: Do we treat congruent faces as distinguishable or indistinguishable? 

Consider our die, and the first unfolding of it (#1). It is possible to unfold the die as shown by #2: 

 

The shapes of #1 and #2 are the same, but the faces are in a different order. We need to decide whether 

or not to count unfolding #1 and unfolding #2 as the same. 

Choice 2: Do we treat the inside and outside of the polyhedron as distinguishable or indistinguishable? 

Once again, consider our die. Ignoring the pips for a moment, suppose each face has an O printed on the 

outside. Furthermore, let the die be hollow, and suppose the inside of each face has an I printed on it. In 

this setup, unfolding #1 is as below. We can unfold our die as shown in #3; if we flip this over, we get the 

same shape as #1, but with the inside up rather than the outside. 
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Again, we need to make a decision about whether or not unfolding #1 is the same as unfolding #3. 

Depending on our two choices, we have four possible cases, which for the rest of the paper will be 

referred to as follows: 

Case 1: Faces distinguishable, inside/outside distinguishable. 

Case 2: Faces indistinguishable, inside/outside distinguishable. 

Case 3: Faces indistinguishable, inside/outside indistinguishable. 

Case 4: Faces distinguishable, inside/outside indistinguishable. 

Beginnings 

The first method we used to try to count the number of unfolding of a given polyhedron was to simply 

list them as they came to mind. This proved to be quite difficult for two reasons. First of all, there didn’t 

seem to be any way to determine when the list was complete; second, depending on what case we were 

dealing with, it was not always obvious which seemingly different unfoldings were the same. We were 

able to find some numbers, but our confidence in them was tenuous at best. Professor McNamara 

found two tools, however, that would allow us to count unfoldings with a high degree of certainty for a 

given polyhedron and a given case (out of the 4 previously described). 

Methods 

Case 1 (Matrix-Tree Theorem) 

Case 1 is the easiest to deal with, because we need not worry about any two unfoldings being counted 

as the same; in order to understand the method in case 1, however, we need something called the 

Matrix-Tree Theorem. This theorem requires a basic understanding of some terms from graph theory. 

Def: A graph is a (labeled) set of vertices and edges connecting those vertices. 

Def: A spanning tree of a given graph is a connected subset of the edges of that graph such that every 

vertex is hit by at least one edge, and there are no cycles (closed loops) contained in the subset. 
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There is a well known fact that we must now utilize: it is possible to represent any given polyhedron by a 

graph. For example, consider the right pyramid with a square base. We can represent this as the graph 

below (labeled pyr-4). 

 

Notice the graph has the same number of vertices and edges as the pyramid, and the same number of 

faces, if we treat the unenclosed portion of the plane as the square base. 

The next observation we make is more subtle but immediately believable: every case 1 unfolding of a 

polyhedron corresponds uniquely to a spanning tree of the associated graph. This follows from our 

characterization of unfolding as a cutting of edges; if we take a subset of the edges of the graph, cutting 

along the corresponding edges of a polyhedron will produce an unfolding if and only if the subset was a 

spanning tree! If the first condition of a spanning tree was not satisfied, we would retain a 3-D corner 

that could not be flattened into the 2-D plane. If the second condition is not satisfied, and our set of 

edges contains a cycle, then we will have cut our polyhedron into two separate pieces. 
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So, as far as case 1 goes, we have transformed the problem: to count the unfoldings of a polyhedron, we 

need only count the distinct spanning trees of the associated graph. It turns out that Kirchoff’s Spanning 

Tree Theorem tells us exactly how to do this. 

KIRCHOFF’S SPANNING TREE THEOREM 

Suppose we have a graph consisting of vertices v1, v2, … vn and edges e1, e2, … em. We now create an nxn 

matrix, L, as follows:  

If i = j, then Lij is the number of edges touching vi. If i does not equal j and if there is an edge connecting 

vi and vj, both Lij and Lji are -1; if there is no such edge, both Lij and Lji are 0. 

Now, let L’ be the n-1xn-1 matrix formed by omitting the last row and column of L (this is for uniformity 

in the rest of the paper; the following is true if you omit the mth row and mth column of L). The 

determinant of this matrix is equal to the number of spanning trees of our graph. 

For a full example of case 1, let us find the number of unfoldings of a right pentagonal prism, the graph 

of which is shown below. 

 

The labeling of the vertices from 1 to 10 is arbitrary. We construct L now, and then omit the last 

row/column to get L’: 
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The determinant of L’ is 1,805; thus, there are 1,805 ways to unfold a pentagonal prism in case 1 (refer 

to table at end of paper). 

Case 2 (Burnside’s Lemma) 

Recall that in case 2, we now treat congruent faces as indistinguishable, though the inside & outside are 

still distinguishable. This case is harder than the previous one, because now some different spanning 

trees may correspond to the same unfolding. It turns out that two spanning trees give the same case 2 

unfolding precisely when the second spanning tree can be attained from rotating the first. 

 

In this case, the first thing we need to do is look at the group of rotations of a given polyhedron. Once 

we’ve done this, we can use a very useful theorem: Burnside’s Lemma. 
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BURNSIDE’S LEMMA (in the context of case 2). 

Let R0, R1, … Rn-1 be the rotations on a given polyhedron. Then the number of case 2 unfoldings of the 

polyhedron equals 
1

𝑛
 𝑇0 + 𝑇1 + ⋯ + 𝑇𝑛−1 , where Ti is the total number of spanning trees that remain 

unchanged by Ri. 

Example (Hexagonal Pyramid) 

Consider the hexagonal pyramid and associated graph. 

 

There are 6 rotations we can apply to this pyramid that result in the same orientation of the polyhedron: 

these are the 60o, 120o, 180o, 240o, 300o, and identity (0o) rotations about the axis going through the 

point of the pyramid and the center of the base. We would like to count the number of spanning trees 

that are fixed by (that is, remain the same after) each rotation. Since the identity rotation does nothing, 

the number of spanning trees of the graph fixed under this rotation is simply the total number of 

spanning trees of the graph (which we can easily compute using Kirchoff’s Spanning Tree Theorem). For 

each of the other rotations, we’ll first label the edges of the graph: 
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We now attack each rotation individually. For the 60o rotation, a spanning tree that includes A will only 

be fixed if it includes B, C, D, E, and F as well. Similarly, if a spanning tree contains G, it is fixed only if it 

contains H, I, J, K, and L. since we have groups of edges that must be selected together, we can relabel 

the edges as follows:  

 

If we choose the sides labeled A, we have a spanning tree. If we choose the sides labeled B, we have a 

cycle, which is not allowed. So, the 60o rotation fixes a single spanning tree. 

Next, we’ll look at the 120o rotation. By the same reasoning as before, it yields the following relabeling: 

 

If we select A and B, A and C, A and D, B and C, or B and D, we get a spanning tree (C and D contains a 

cycle). So, the 120o rotation fixes five spanning trees. Proceeding in this manner, we get the following 

number of spanning trees fixed by the rotations: 

Rotation 0o 60o 120o 180o 240o 300o 

Trees Fixed 320 1 5 16 5 1 
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So, the total number of case 2 unfoldings of a right hexagonal pyramid is  

1

6
 320 + 1 + 5 + 16 + 5 + 1 =  58. 

Case 3 

Determining the number of case 3 unfoldings of a given polyhedron is more difficult still. The technique 

is the same as in case 2, but now we need to consider the group of “flips” (reflections) as well as the 

group of rotations. 

 

For case 3, we rephrase Burnside’s Lemma Slightly: 

BURNSIDE’S LEMMA (in the context of case 3) 

Let R0, R1, … Rn-1 be the rotations on a given polyhedron, and let F0, F1, … Fn-1 be the group of flips on the 

polyhedron. Then the number of case 2 unfoldings of the polyhedron equals 
1

2𝑛
 𝑇0 + 𝑇1 + ⋯ +  𝑇𝑛−1 +

𝑇0
∗ + 𝑇1

∗ + ⋯ + 𝑇𝑛−1
∗  , where Ti is the total number of spanning trees that remain unchanged by Ri and 

Ti* is the total number of spanning trees that remain unchanged by Fi. 

We will return to the example of the right hexagonal pyramid, as we have already calculated all of the 

values of T, and need only calculate the T*s. Analogously to case 2, we look at each flip individually. 

We’ll now look at F0; as before, we have assigned the same letter to all edges in a group that must be 

chosen together. Noting that, by definition, a spanning tree of a graph with n vertices contains n-1 

edges, we see that we must either select both A and B or neither A and B (because we need 6 edges, an 

even number). If we do not select A and B, it is impossible to select a spanning tree from among the 

remaining edges. So, having selected A and B, we must now select two of C, D, E, F, and G. The only pairs 
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that do not yield spanning trees (because they contain cycles) are CD and GF; this means that F0 fixes the 

8 other spanning trees attainable. It is easy to see that, because of symmetry, F2 and F4 will fix the same 

number. 

 

We next look at F1 (because of symmetry, this will fix the same number of spanning trees as F3 and F5) . 

Again, we have relabeled the graph. As before, we see that we must either select both A and B or 

neither A nor B. This time, however, selecting both A and B will necessarily give us a cycle, so we must 

omit both. Selecting from the remaining sets of edges, it turns out there are 8 that will give us a fixed 

spanning tree (only CDE and EFG fail).  

 

So, we now have the following table of values: 

Rotation 0o 60o 120o 180o 240o 300o 

Trees Fixed 320 1 5 16 5 1 

Flip F0 F1 F2 F3 F4 F5 

Trees Fixed 8 8 8 8 8 8 
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This tells us that the total number of case 3 unfoldings of a right hexagonal pyramid is 

1

12
 320 + 1 + 5 + 16 + 5 + 1 + 6 8  =  33. 

A Note on Case 4 

The research I conducted this semester did not address case 4 (where congruent faces are 

distinguishable, but the inside and outside of the polyhedron are indistinguishable). This case seems to 

be of the same difficulty as case 2. 

Going Forward 

This research leaves a lot of questions to be answered, and, indeed, asked. Our research focused on 

calculating numbers, but one topic to address in the future would be the relations between these sets of 

numbers. Is it possible or easy to asymptotically bound the number of unfoldings of a given class of 

polyhedra, so that one could attain a good estimate of the number of unfoldings without having to do 

calculations for very large n? Furthermore, some of the sequences of numbers we discovered are 

known, but for reasons (seemingly) completely unrelated to unfoldings of polyhedra, or, indeed, to any 

sort of dealings with polyhedra. Why would those numbers turn up in this research? 
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Appendix of values 

Right Pyramid with n-sided base   

n Case 1 Case 2 Case 3 
3 16 6 4 
4 45 13 8 
5 121 25 15 
6 320 58 33 
7 841 121 67 
8 2205 283 152 
9 5776 646 320 

10 15125 1527 791 

 

Right n-prism (same as Bipyramid with n-sided generator)  

N Case 1 Case 2 Case 3 
3 75 15 9 
4 384 52 29 
5 1805 190 ? 
6 8100 690 ? 
7 35287 2556 ? 
8 150528 9464 ? 
9 632025 35245 ? 

10 2620860 131253 ? 

 

  



13 
 

Truncated n-pyramid   

N Case 1 Case 2 Case 3 
3 75 25 14 
4 384 96 54 
5 1805 361 186 
6 8100 1350 690 
7 35287 5041 2541 
8 150528 18816 ? 
9 632025 70225 ? 

10 2620860 262086 ? 

 

Extended n-prism   

N Case 1 Case 2 Case 3 
3 361 121 63 
4 3509 885 448 
5 30976 6196 ? 
6 261725 43691 ? 
7 2163841 309121 ? 
8 17688869 2211555 ? 
9 143736121 15970761 ? 

10 1164201984 116423308 ? 
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n-sided Anti-prism   

N Case 1 Case 2 Case 3 
3 384 72 ? 
4 3528 462 ? 
5 30250 3080 ? 
6 248832 ? ? 
7 1989806 ? ? 
8 15586704 ? ? 
9 120187008 ? ? 

10 915304500 ? ? 

 


