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Abstract

In mathematics, a group is the set of symmetries of an object. Coxeter groups

are a broad and natural class of groups that are related to reflectional symmetries.

Each Coxeter group is determined by a diagram, called a labeled graph, that encodes

algebraic information about the group. In general, two different labeled graphs can

give rise to the same group. It is therefore natural to ask: are there classes of

Coxeter groups that have unique associated graphs? Coxeter groups that have a

unique labeled graph are said to be rigid. There are important classes of Coxeter

groups that are rigid. Radcliffe [5] showed that the class of right-angled Coxeter

groups is rigid, and Bahls [1] extended this result to the class of even Coxeter

groups. The main aim of this thesis is to provide an alternative proof, based on an

argument outlined by A. Piggott [4], of the rigidity of right-angled Coxeter groups.
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1. Introduction

In mathematics, a group is the set of symmetries of an object. Coxeter groups

are a broad and natural class of groups that are related to reflectional symmetries.

Each Coxeter group is determined by a diagram, called a labeled graph, that encodes

algebraic information about the group. We will see that in general, two different

labeled graphs can give rise to the same group. It is therefore natural to ask: are

there classes of Coxeter groups that have unique associated graphs? Coxeter groups

that have a unique labeled graph are said to be rigid. There are important classes

of Coxeter groups that are rigid. Radcliffe [5] showed that the class of right-angled

Coxeter groups is rigid, and Bahls [1] extended this result to the class of even Coxeter

groups. The main aim of this thesis is to provide an alternative proof, based on an

argument outlined by A. Piggott [4], of the rigidity of right-angled Coxeter groups.

A right-angled Coxeter group W (Γ), is determined by a simple (unlabeled) graph

Γ: we often write W instead of W (Γ) when it is clear from the context (the precise

construction is given in Section 2.4). Our main theorem is the following.

Theorem 1.1 (Rigidity of right-angled Coxeter groups). Let Γ1 and Γ2 be simple

graphs. Then the right-angled Coxeter groups W (Γ1) and W (Γ2) are isomorphic

groups if and only if Γ1 and Γ2 are isomorphic graphs.

The thesis is organized as follows. In Section 2 we motivate a discussion of groups

with an example; we also introduce the notion of rigidity. In Section 3 we collect

useful properties of right-angled Coxeter groups. In Section 4 we construct two

graphs from a pair (Γ, W ), where W = W (Γ); a graph Ω from the graph Γ and a

graph ∆ from the group W . This is illustrated in the following diagram, where →

indicates a deterministic procedure:
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Γ → W

↓ ↓

Ω ∆

In Section 4 we show that the graphs Ω and ∆ are isomorphic. This shows that

W determines Ω and improves our diagram to the following:

Γ → W

↓ ↓

Ω ∼= ∆

In Section 5 we reconstruct the graph Γ using only Ω. Our diagram becomes:

Γ → W

l ↓

Ω ∼= ∆

So given a right-angled Coxeter group W = W (Γ), there is a unique associated

graph Ω. In Section 5.3 we show that the construction of Ω from the graph Γ is

invertible. It follows that for each right-angled Coxeter group there is only one

graph Γ, associated to the group. Equivalently, non-isomorphic graphs give rise to

non-isomorphic right-angled Coxeter groups, and the theorem is proved.

Section 6 gives a worked example which we encourage the reader to consult at

appropriate stages of the proof.

Mathematicians often look for multiple proofs of the same theorem. A proof is

not just a means to establish veracity; it provides insight into the inner workings of

a problem. This proof is novel because, for the most part, it relies on elementary
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graph theory. This is useful because people tend to have a good intuition for pictures

and diagrams. As such our proof is accessible to a broad mathematical audience.
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2. Preliminaries

In this section we use an example to motivate a discussion of groups, group presen-

tations and words. We also formally introduce graphs, right-angled Coxeter groups

and the question of rigidity. Our example will illustrate that, in general, Coxeter

groups are not rigid.

2.1. Symmetry and Groups. There are various ways that the coordinate plane

can be mapped onto itself while preserving the distance between points. For exam-

ple, it can be translated, rotated, and reflected. Such distance preserving mappings

are called isometries of the plane. Consider a hexagon in the plane as shown below.

x

y

6

1 2

3

45

Figure 1. Hexagon.

The isometries of the plane that leave the hexagon unchanged to our perception

are called symmetries of the hexagon. In this case the symmetries include certain

rotations, reflections, and the trivial act of mapping each point of the hexagon

back to itself. For example, if the plane is flipped over the y-axis the hexagon and

plane will remain visually unchanged. However, if the corners of the hexagon were

labeled we would know that the hexagon had been changed. The symmetries of the

hexagon include reflections over the the lines through opposite corners and over the

lines through the midpoints of opposite sides. It can also be rotated about its center

by 60, 120, 180, 240, 300 or 360 degrees. The location of two adjacent corners will

determine the position of the hexagon. Since a corner has six possible locations and

an adjacent corner can either be clockwise adjacent or counterclockwise adjacent,
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we know that there are twelve symmetries in total. Let’s denote the set of the twelve

symmetries of the hexagon by H.

Consider rotating the plane clockwise by 60◦ and then reflecting it over the y-

axis. When each of these symmetries is done one after the other the result is still a

symmetry. This illustrates a natural way to define the product of two symmetries:

given two symmetries α and β, the product α ∗ β is defined as performing β then

α. This operation is a binary operation on the set H. A binary operation on a set

S is a function f : S × S → S. Addition and multiplication are both examples of

binary operations. If the plane is rotated clockwise by 60◦ and then reflected over

the y-axis, corner 1 will be sent to corner 2 then back to itself. However, if the

plane is reflected over the y-axis and then rotated clockwise by 60◦, corner 1 will

be sent to corner 2 and then to corner 3’s original position. This shows that, unlike

addition where a + b = b + a, the operation ∗ is not commutative; that is α ∗ β is

not necessarily equal to β ∗ α.

Let’s observe some other properties of the set H and operation ∗.

(1) Identity: Rotating the plane by 0 or 360◦ is called the trivial symmetry,

and denoted is 1. If we perform symmetry α then 1, it’s the same as 1 then

α, which is the same as just performing α. That is to say α ∗ 1 = 1 ∗ α = α.

(2) Associativity: Note how we defined ∗. For α ∗ β we first do β then α.

Consider (α ∗ β) ∗ γ. This means perform γ then (α ∗ β). It amounts to

performing γ then β then α. Now consider α∗ (β ∗γ). This would amount to

doing γ then β then α as well. Thus, regardless of the parenthetical grouping,

(α ∗ β) ∗ γ = α ∗ (β ∗ γ). This property is known as associativity.

(3) Inverse: When we perform symmetry α, each point of the hexagon is

mapped to a distinct point in the plane. This mapping can be undone by

mapping each point back to its original position. Since α is a symmetry, the

undoing of α is a symmetry as well. The undoing of α is called α inverse,

and written α−1. Observe that doing α then α−1 is the identity 1.
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These properties might be familiar. The integers have these properties under the

operation of addition with identity element 0. In fact it is these three properties

that precisely define what is called a group.

Definition 2.1. A group is a set H with a binary operation ∗ : H × H → H such

that there is an identity element, ∗ is associative, and each element in H has an

inverse.

From now on we will refer to symmetries as being elements of a group, and will

write αβ instead of α ∗ β. The identity element of a group will be denoted by 1.

The inverse of the element α will be denoted by α−1.

2.2. Generators, Relations and Words. The group H includes an element ρ

which is a rotation by 60◦. Consider ρ2. The product of ρ with itself is a 120◦

rotation. Repeatedly taking the product of ρ with itself generates the five other

rotations including the identity. Below is another figure of the hexagon with two

lines of reflection. We call the reflection over the line a, α, and the reflection over

the line b, β.

6

2

3

5

1

4

b a

Figure 2. Hexagon with Lines of Reflection.

Let’s compute the product αβ. Reflecting over b will send corner 1 to itself, then

reflecting over a will send 1 to 2’s original position. Corner 2 will be sent to 6 by

β then to 3’s original position by α. From this we can tell that αβ = ρ, where ρ

is a 60◦ rotation. By repeatedly taking the product of α and β we can get all the
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rotations in H. Similar calculations show that any reflection in H can be achieved

using only α and β. We say that α and β are generators of the group.

The product αα is 1, since doing a reflection twice amounts to the identity.

Similarly ββ = 1. Elements that are their own inverse are called involutions.

Since αβ is a 60◦ rotation, (αβ)6 = 1. Equations involving group elements are

relations. It is perhaps not obvious but specifying the generators α, β and the

relations α2 = 1, β2 = 1 and (αβ)6 = 1 uniquely determines the group H; that is,

all multiplication rules in the group can be deduced from this list of relations. We

denote this group succinctly as follows:

(1) 〈α, β|α2 = 1, β2 = 1, (αβ)6 = 1〉.

This is known as a group presentation. In general, it’s hard to find generators and

relations that determine a given group. Groups can be described in terms of gener-

ators and relations in multiple ways. Determining if two different sets of generators

and relations give rise to the same group is usually a very difficult problem.

In a finitely generated group every group element can be written as the product

of generators and their inverses. When the generators are involutions, as in the

presentations considered in this thesis, each element can be written as a product of

generators. We can think of generators as letters, and finite strings of generators as

words which spell the group element corresponding to that product of generators.

We consider words to be equivalent if they spell the same group element. We use

relations to determine which words are equivalent. The set of words that spell a

certain group element is called an equivalence class of words, so we can think of

group elements as equivalence classes of words. The empty string represents the

identity element in the group.

Consider the presentation of H in equation (1). In this case, our letters are α

and β. Any finite string of α’s and β’s is a word which determines a group element.

Some distinct words determine the same group element, and so are equivalent. For

example, the words: ββαβαβαβαβ and ααβαβα are equivalent. We see this as
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follows. Since α and β are involutions we know

ββαβαβαβαβ = αβαβαβαβ and ααβαβα = βαβα.

Since (αβ)6 = 1 we know that:

αβαβαβαβ(αβαβ) = 1.

If we multiply on the right by βαβα and use the fact that the letters are involutions

we get:

αβαβαβαβ = βαβα.

Thus we can conclude that

ββαβαβαβαβ = ααβαβα.

We define the length of a word to be the number of letters in the word. So

ααβαβα has length 6 and βαβα has length 4, even though they both spell the

same group element. We define the length of a group element to be the minimum

number of letters needed to spell that element. Let w be the group element spelled

by ααβαβα. Since w is spelled by βαβα, and no shorter word can spell w, the

length of w is 4. We write ℓ(ααβαβα) = 6 and ℓ(w) = 4. We say that a word is

reduced if there is no shorter way to spell the same group element. For example,

βαβα is reduced and ααβαβα is not.

The group H was easily described without generators or relations. In general,

however, groups can be very large or even infinite. It is difficult to list all the

elements in large groups and impossible to list all the elements and products of an

infinite group. Group presentations and words are a useful way to think about and

describe such unwieldy groups.

2.3. Graphs. Here we define simple graphs and several graph properties that are

important to this thesis.

Definition 2.2. A (simple) graph Γ, consists of a pair of sets (VΓ, EΓ). The set

VΓ = {v1, . . . , vn} is a set of vertices. The set EΓ, the set of edges, is a set of
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unordered pairs from VΓ; that is, EΓ ⊆ {{vi, vj} | vi, vj ∈ VΓ and vi 6= vj}. We say

vi and vj are adjacent if {vi, vj} ∈ EΓ.

For an example of a graph see Figure 5.

Definition 2.3. Let Γ = (VΓ, EΓ) be a graph. A subgraph of Γ is a graph ∆ =

(V∆, E∆) where V∆ ⊆ V and {vi, vj} ∈ E∆ if and only if {vi, vj} ∈ E.

Definition 2.4. A graph Γ = (VΓ, E) is complete if whenever vi, vj ∈ V and

vi 6= vj, {vi, vj} ∈ E (all the vertices are pairwise adjacent).

When graphs are essentially the same we say they are isomorphic. We make the

following more precise definition.

Definition 2.5. Let Γ = (VΓ, EΓ) and Ψ = (VΨ, EΨ) be graphs. A graph isomor-

phism from Γ to Ψ is a bijective map f : VΓ → VΨ such that {vi, vj} ∈ EΓ if and

only if {f(vi), f(vj)} ∈ EΨ. If such a graph isomorphism exists, then we say that Γ

and Ψ are isomorphic.

2.4. Right-Angled Coxeter Groups and The Rigidity Question. A right-

angled Coxeter group is a group determined by a simple graph. The graph encodes

all the information contained in a group presentation. Each vertex corresponds to

a generating involution and the edges indicate which generators commute.

Definition 2.6. Let Γ = (VΓ, EΓ) be a graph. The right-angled Coxeter group

associated to Γ is the finitely generated group W (Γ), with generators VΓ and relations

v2
i = 1 for each i and (vivj)

2 = 1 if and only if {vi, vj} ∈ EΓ. That is to say, all the

vertices correspond to generators that are involutions and two generators commute

if and only if they are adjacent.

Recall that we often write W instead of W (Γ) when Γ is clear from the context.

A right-angled Coxeter group is rigid if there is a unique associated graph.
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2.5. A Non-Rigid Coxeter Group. Right-angled Coxeter groups are a special

case of a broader class of groups called Coxeter groups. A Coxeter group is de-

termined by a labeled graph; a graph where each edge is labeled with an integer

greater than or equal to two. Recall the group H from section 2.2 with presentation

〈α, β|α2 = 1, β2 = 1, (αβ)6 = 1〉. It is a Coxeter group but not a right-angled Cox-

eter group. Its presentation is encoded graphically as two points which represent α

and β, with an edge between them labeled 6 to express that (αβ)6 = 1 (see Figure

3).

6

Figure 3. Graphical Presentation of H.

Recall the hexagon in Figure 2. Let γ be a rotation by 180◦ and σ the reflection

over the line through the midpoints of segments 61 and 34. Then γ, σ and α also

generate H. These generators provide an alternate presentation of H:

〈α, σ, γ|α2 = 1, σ2 = 1, γ2 = 1, (αγ)2 = 1, (σγ)2 = 1, (ασ)3 = 1〉.

The graph associated with this presentation is a triangle with two sides labeled 2

and one side labeled 3.

3

2

2

Figure 4. Another Graphical Presentation of H.

This example shows that, in general, Coxeter groups are not rigid.
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3. Properties of Right-Angled Coxeter Groups

It this section we state and prove several properties of right-angled Coxeter groups

that will be used in our proof of rigidity.

3.1. Subgraphs and Subgroups. Let Γ be a graph and W (Γ) the associated

right-angled Coxeter group. Each subgraph ∆ of Γ determines a subgroup of W (Γ)

generated by V∆. The following theorem asserts that all finite subgroups are conju-

gate to subgroups generated by complete subgraphs.

Theorem 3.1 ([2](Chapter 4, Exercise 2(d))). If G is a finite subgroup of a right-

angled Coxeter group W (Γ), then there exists w ∈ W (Γ) and a complete subgraph

X ⊆ Γ, such that wGw−1 = {wgw−1 : g ∈ G} = W (X).

3.2. The Deletion Condition. The following condition describes when and how

we can reduce words corresponding to elements in a right-angled Coxeter group. A

proof may be found in [3](Page 10, Theorem 3.1). Recall that a word is reduced if

there is no shorter way to spell the corresponding group element.

Lemma 3.2 (Deletion Condition). If W is a right-angled Coxeter group and a1a2 . . . ap

is not a reduced word, then there exist i, j such that 1 ≤ i < j ≤ p, ai = aj and

aiak = akai for i < k < j.

3.3. Conjugacy Classes and Cyclically Reduced Involutions. We now define

two properties of group elements.

Definition 3.3. Given a group element u ∈ W , the conjugacy class of u, denoted

uW , is the set {xux−1 : x ∈ W}.

Observe that if u is a group element with order n and w ∈ W , then wuw−1 has

order n as well, since

(wuw−1)n = wuw−1wuw−1 . . . wuw−1 = wunw−1 = ww−1 = 1.

.
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Definition 3.4. Let u ∈ W be a group element. We say that u is cyclically

reduced if there is no shorter group element in the conjugacy class of u.

Note that a word can be reduced and a group element can be cyclically reduced.

Now we prove two lemmas which establish that cyclically reduced involutions

correspond to subsets of the generators that pairwise commute.

Lemma 3.5. If a reduced word a1a2a3 . . . ap spells a cyclically reduced involution in

W , then aiaj = ajai for each pair i, j ∈ {1, 2 . . . , p}.

Proof. Let a1a2a3 . . . ap be a reduced word that spells a cyclically reduced involution

w ∈ W . Since a1a2a3 . . . an spells an involution, writing it twice spells the identity;

that is

a1a2a3 . . . apa1a2a3 . . . ap = 1.

For convenience, we relabel this word from 1 to p + p where ai = ap+i,

a1a2a3 . . . apap+1ap+2ap+3 . . . ap+p.

Since this word is not reduced, by the deletion condition, there exist i, j with i < j,

ai = aj and aiak = akai for i < k < j.

Suppose that i < j ≤ p. This implies that

a1a2 . . . âi . . . âj . . . apap+1ap+2 . . . ap+p = 1,

where the notation âi indicates that ai has been removed from the word. Since w

is an involution if we multiply on the right by a1a2a3 . . . ap we get

a1a2 . . . âi . . . âj . . . ap = a1a2a3 . . . ap,

which contradicts the fact that a1a2a3 . . . ap is reduced.

Similarly, suppose that p < i < j. Again this implies that

a1a2âi . . . âj . . . ap = a1a2a3 . . . ap

which contradicts the fact that a1a2a3 . . . ap is reduced.

Thus we have i ≤ p < j. Now suppose that i 6= j − p; i.e. suppose that ai is

not in the same position in both copies of the word. By the deletion condition, ai
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and aj commute with ak whenever i < k < j. Since ai and aj−p are both letters in

a1a2a3 . . . ap and aj−p commutes with ak whenever 1 ≤ k ≤ j − p, we have that:

a1a2a3 . . . ap is either equivalent to aj−pa1 . . . âj−p . . . âi . . . apai

or equivalent to aj−pa1 . . . âi . . . âj−p . . . apai

We know aj−p = ai and that ai is an involution. So if we conjugate aj−pa1 . . . apai

by ai we get a1a2 . . . âi . . . âp+i . . . ap. This contradicts the assumption that w is

cyclically reduced.

Thus we have i = j − p; that is or j = p + i. Since ai commutes with ak for all

k > i and aj = ai commutes with ak for all k < i, ai commutes with every letter in

{a1, a2, a3, . . . , ap}.

We now proceed iteratively. Canceling ai with ap+i reveals that

a1 . . . âi . . . apap+1 . . . âp+i . . . ap+p = 1.

The deletion condition implies that there exist h, t with h < t, ah = at and ahak =

akah for h < k < t. Since ai commutes with every letter we know that

a1 . . . ai . . . ah . . . apap+1 . . . ai . . . at . . . ap+p = 1.

Now similar arguments as before show that h = t − p and that at commutes with

every letter in {a1, a2, a3, . . . , ap}.

�

Lemma 3.6. If a1a2a3 . . . ap is a reduced word that spells a cyclically reduced invo-

lution w ∈ W , then ai 6= aj whenever 1 ≤ i < j ≤ p.

Proof. Suppose a1a2 . . . ap is a reduced word that spells a cyclically reduced involu-

tion w. Suppose that ai = aj for some i, j, where 1 ≤ i < j ≤ p. By our previous

Lemma 3.5, the letters in {a1, a2, a3, . . . , ap} pairwise commute. So we know that,

a1a2 . . . ai . . . aj . . . ap = a1a2 . . . âi . . . âj . . . apaiaj

Since aiaj = 1 we have,

a1a2 . . . aiaj . . . ap = a1a2 . . . âi . . . âj . . . ap
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This contradicts the fact that w was reduced. Thus for any i, j with 1 ≤ i < j ≤ p

we know that ai 6= aj . �

Note that each generator appears an even number of times in each relation defining

W . It follows that each group element has a well-defined notion of parity: if vi ∈ VΓ

appears an odd (or respectively even) number of times in a word that spells u ∈ W ,

then vi appears an odd (or respectively even) number of times in every word that

spells u. If w is spelled by b1b2 . . . bq then w−1 is spelled by bq . . . b2b1. So letters

in w that appear an odd (or respectively) even number of times, appear in w−1 an

odd (or respectively) even number of times. It follows that letters in a word that

spells wvw−1, have the same parity as letters in a word that spells v.

Lemma 3.7. Each conjugacy class of involutions contains a unique cyclically re-

duced involution.

Proof. Recall that every conjugate of an involution is an involution as well. Every

conjugacy class contains an element of minimal length and thus contains a cyclically

reduced involution. Let u and v be cyclically reduced involutions. Suppose that

u = wvw−1 for some w ∈ W . Since v and u are cyclically reduced and conjugate

they both have the same length. If a letter appears an odd (or respectively even)

number of times in a word that spells v then it will appears an odd (or respectively

even) number of times in every word that spells u. By Lemma 3.6 every letter in a

word that spells a cyclically reduced involution appears exactly once. Thus every

letter that appears once in a word that spells u appears once in a word that spells

wvw−1. It follows that w = 1 and u = v. So cyclically reduced involutions that are

are conjugate are equal. Thus each conjugacy class of involutions contains a unique

cyclically reduced involution. �
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4. The Graph Ω

In this section we describe two graph constructions.

• Given a graph Γ, construct a graph Ω.

• Given a group W , construct a graph ∆.

If W = W (Γ), we then prove Ω ∼= Γ.

We construct Ω = (VΩ, EΩ) as follows:

• VΩ is the set of complete subgraphs of Γ;

• {X, Y } ∈ EΩ if and only if X and Y are distinct complete subgraphs of Γ

and X and Y are subgraphs of a complete subgraph Z of Γ.

For an example of a graph Γ and a corresponding graph Ω see Figures 5 and 6.

We construct ∆ = (V∆, E∆) as follows:

• V∆ is the set of conjugacy classes of involutions in W ;

• {uW , vW } ∈ E∆ if and only if uW and vW are distinct conjugacy classes of

involutions in W and there exist x ∈ uW and y ∈ vW such that xy = yx.

We represent the various constructions as follows:

Γ → W (Γ)

↓ ↓

Ω ∆

The connection between Ω and ∆ is exhibited by the map i : VΩ → V∆ defined

as follows:

(2) i(X) = (
∏

ai∈X

ai)
W .

This map sends a complete subgraph X of Γ to the conjugacy class of involutions in

W that contains the product of vertices in X. We will show that i induces a graph

isomorphism.

Lemma 4.1. The map i : VΩ → V∆ defined in 2, is a bijection.
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Proof. First we show that i is one-to-one. Suppose that i(X) = i(Y ). Then

(
∏

ai∈X ai)
W = (

∏
bi∈Y bi)

W . Since all the letters in {a1, a2, . . . , ap} pairwise com-

mute, the word a1a2 . . . ap spells an involution in W . Since every letter in a1a2 . . . ap

appears once and conjugation does not change the parity of letters, there is no

shorter word that spells a group element in the same conjugacy class. Thus a1a2 . . . ap

is a reduced word which spells a cyclically reduced involution. Similarly b1b2 · · ·q

is a reduced word which spells a cyclically reduced involution. By lemma 3.7, each

conjugacy class of involution contains a unique cyclically reduced involution. Thus

a1a2 . . . ap spells the same cyclically reduced involution as b1b2 . . . bq. So X = Y .

Therefore i is one-to-one.

Now we must show that i is onto. Let uW be a conjugacy class of involutions

where u is the unique cyclically reduced involution in that conjugacy class. By

Lemma 3.5 and Lemma 3.6, u may be may be spelled a1a2 . . . ap where the letters

are distinct and pairwise commute. Thus there exists a subset of the generators that

pairwise commute. Let X = {a1, a2, . . . , ap}. Since all the letters in {a1, a2, . . . , ap}

pairwise commute, and vertices in Γ are adjacent if and only if they commute, X is

a complete subgraph of Γ and i(X) = uW . �

The next two lemmas assert that i induces a graph isomorphism from Ω to ∆.

Lemma 4.2. Let X, Y ∈ VΩ. If {X, Y } ∈ EΩ then {i(X), i(Y )} ∈ E∆.

Proof. Assume {X, Y } ∈ EΩ. Then X and Y are complete subgraphs of Γ and

X, Y ⊆ Z for some Z ∈ VΓ. Let {a1, a2, . . . , ap} be the vertex set of X and

{b1, b2, . . . , bq} the vertex set of Y . Then i(X) = (a1a2 . . . ap)
W and i(Y ) = (b1b2 . . . bq)

W .

Since X ⊆ Z and Y ⊆ Z, each ai ∈ X is in Z and each bi ∈ Y is in Z. Since Z

is a complete subgraph, the letters {a1, a2, . . . , ap, b1, b2, . . . , bq} pairwise commute.

Thus,

a1a2 . . . apb1b1 . . . bq = b1b2 . . . bqa1a2 . . . ap

By construction {i(X), i(Y )} ∈ E∆. �
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Lemma 4.3. Let X, Y ∈ VΩ. If {i(X), i(Y )} ∈ E∆ then {X, Y } ∈ EΩ.

Proof. Assume {i(X), i(Y )} ∈ E∆. By construction i(X) and i(Y ) are distinct

conjugacy classes of involutions with u ∈ i(X) and v ∈ i(Y ) such that uv = vu.

Note that the subgroup generated by u and v is finite (it only contains u, v, uv and

1). By Theorem 3.1, there exists a complete subgraph Z ⊆ Γ and a group element

w ∈ W (Γ), such that wGw−1 = {wgw−1; g ∈ G} = W (X). So wuw−1 and wvw−1

are elements of W (Z). Since Z is a complete subgraph all the vertices of W (Z)

pairwise commute. It follows that all the elements in W (Z), which include wuw−1

and wvw−1, are cyclically reduced involutions. By Lemma 3.7, wuw−1 = (
∏

ai∈X ai)

and wvw−1 = (
∏

bi∈Y bi). So the letters in (
∏

ai∈X ai) and (
∏

bi∈Y bi) are contained

in (
∏

ci∈Z ci). Therefore X, Y ⊆ Z. By definition {X, Y } ∈ EΩ. �

By Lemma 4.2 if there is an edge in Ω there is an edge between the corresponding

vertices in ∆. And by lemma 4.3 if there is an edge in ∆ then there is an edge

between the corresponding vertices in Ω. Thus we have proved the following.

Proposition 1. The map i induces an isomorphism from Ω to ∆.
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5. Ω Determines Γ

In this section we reconstruct Γ from Ω, thereby inverting the construction of

Ω. This establishes that the construction of the graph Ω from Γ is one-to-one.

Concatenating the construction of ∆ from W , with the isomorphism from ∆ to Ω

and the reconstruction of Γ, shows that the construction of W is invertible and our

theorem is proved..

Γ → W

l ↓

Ω ∼= ∆

5.1. More Properties of Graphs. In this section we state and prove a lemma

about properties of graphs which are of special consideration to the reconstruction

of Γ.

Let Γ = (VΓ, EΓ) be a graph.

Definition 5.1. For each vertex vi ∈ V . The star of vi is

star(vi) = {vj ∈ V : {vi, vj} ∈ E} ∪ {vi};

that is, the star of a vertex is the set of all adjacent vertices and the vertex itself.

We define an equivalence relation on VΓ as follows: vi ∼ vj if and only if star(vi) =

star(vj). An equivalence relation is a commutative, transitive and reflexive relation

that partitions a set. We write [vi] for the set of vertices equivalent to vi.

Definition 5.2. Given a graph Γ define a quotient graph Γ̃ as follows:

• ṼΓ is the set of equivalence classes of VΓ.

• {[vi], [vj ]} ∈ ẼΓ if and only if {vi, vj} ∈ EΓ.

Note that the the construction of edges is well-defined; if ui ∈ [vi] and uj ∈ [vj ]

then {ui, uv} ∈ EΓ ⇔ {vi, vj} ∈ EΓ.
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For any graph Γ the quotient graph Γ̃ is a graph invariant property. This means

that isomorphic graphs will have isomorphic quotient graphs. In fact, given another

grpha ∆, there is an isomorphism g : VΓ → V∆ if and only if Γ̃ and ∆̃ are isomorphic

and there is a function f : V∆̃ → N such that for each vi, the order of [vi] is the

same as f([vi]).

Lemma 5.3. A Graph Γ can be determined from Γ̃ and a function f : VΓ̃ → N

which sends a vertex [U ] ∈ VΓ̃ to the number of elements in [U ].

Proof. The construction proceeds as follows:

• Replace each vertex [U ] ∈ VΓ̃ by a complete subgraph containing f([U ])

vertices, which we label u1, u2, . . . , uf([U ]).

• If two vertices [U ] and [V ] are adjacent in Γ̃, then every vertex ui is adjacent

to every vertex vj .

This procedure replaced each vertex in Γ̃ with the number of vertices in the cor-

responding equivalence class. Since the procedure will determine a graph with the

same quotient graph as Γ, it determines Γ. �

5.2. Γ̃ and Ω̃. Recall that VΩ is the set of complete subgraphs of Γ. The fact that

each vertex in VΓ is itself a complete subgraph of Γ and is thus also a vertex in Ω,

gives a natural injective map j : VΓ → VΩ, defined by j(vi) = {vi}.

Lemma 5.4. j is an injective map that preserves adjacency.

Proof. Let vi, vj be distinct elements in VΓ.

Case 1: Suppose {vi, vj} ∈ EΓ. Then X = {vi, vj} is a complete subgraph of Γ.

Since j(vi) = {vi} and j(vj) = {vj} are both contained in X, {j(vi), j(vj)} ∈ EΩ.

Case 2. Suppose {vi, vj} /∈ EΓ. Then any subgraph of Γ that contains both vi

and vj will not be complete. Thus {j(vi), j(vj)} /∈ EΩ.

�

Lemma 5.5. j induces an injective map j̃ : Γ̃ → Ω̃ which preserves adjacency.
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Proof. Given [vi] ∈ VΓ̃ we define j̃([vi]) = [j(vi)].

First we check that j̃ is well-defined. Suppose [vi] = [vj ]; that is vi and vj are

equivalent vertices in Γ. By definition, star(vi) = star(vj). So if vi is contained in

a complete subgraph of Z of Γ then Z ∪ {vj} is a complete subgraph. It follows

that if j(vi) is adjacent to a vertex in Ω, j(vj) is also adjacent to that vertex.

By symmetry any vertex adjacent to j(vi) is also adjacent to j(vj). Therefore

star(j(vi)) = star(j(vj)) and j̃([vi]) = j̃([vj ]).

Now we show that j̃ is injective. Let [vi] and [vj ] be equivalence classes in Γ with

j̃([vi]) = j̃([vj ]). Suppose that vi is adjacent to a vertex vk in Γ. By Lemma 5.4,

j(vi) is adjacent to j(vk) in Ω. By hypothesis, [j(vi)] = [j(vj)]. So j(vj) is also

adjacent to j(vk). By definition of Ω, X = {vj , vk} is a complete subgraph in Γ, so

vj is adjacent to vk. By symmetry if vj is a adjacent to a vertex vk in Γ then vi

is adjacent to vk as well. Therefore the star(vi) = star(vj) and [vi] = [vj ], so j̃ is

injective.

Now we show that j̃ preserves adjacency. Let [vi], [vj ] be distinct equivalence

classes in Γ with {[vi], [vj ]} ∈ EΓ̃. By definition, vi and vj are adjacent in Γ. By

Lemma 5.4, j(vi) and j(vj) are adjacent in Ω. Since j̃ is injective, [j(vi)] and [j(vj)]

are distinct and by definition they are adjacent. Thus {j̃([vi]), j̃([vj ])} ∈ EΩ̃.

Let [vi], [vj ] be distinct equivalence classes in Γ with {[vi], [vj ]} /∈ EΩ̃. By def-

inition, vi and vj are not adjacent in Γ. By Lemma 5.4, j(vi) and j(vj) are not

adjacent in Ω. Since j̃ is injective, [j(vi)] and [j(vj)] are distinct and by definition

they are not adjacent. Thus {j̃([vi]), j̃([vj ])} /∈ EΩ̃. �

5.3. The Procedure for Determining Γ from Ω. In Lemma 5.5 we exhibited

an injective map from Γ̃ → Ω̃ which preserves adjacency. Since Γ̃ is isomorphic to

a subgraph of Ω̃, by Lemma 5.3 we know that we can determine Γ from Ω̃ with a

function f : VΩ̃ → N such that f([U ]) = 0 if [U ] ∩ j(VΓ) = ∅ and f([U ]) = n if

|[U ] ∩ j(VΓ)| = n. We now define such a function f .
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In any graph Γ, for vertices vi and vj we write [vi] � [vj ] if the star(vi) ⊆ star(vj)

and [vi] ≺ [vj ] if star([vi]) ⊂ star([vj)].

Definition 5.6. We define the height, h(vi), to be the length of the maximal strictly

ascending chain of stars that starts with vi. If star(vi) isn’t strictly contained in the

star of any other vertex, then we say that it has height 1.

Definition 5.7. Let Γ be a graph. For a vertex vi ∈ VΓ, we define θvi
to be the

union of all vertices vj ∈ Γ, star(vi) � star(vj). We write |θvi
| for the number of

vertices in θvi
.

Recall that each element of VΩ̃ is an equivalence class of vertices in Ω. We define

f as follows:

f : VΩ̃ → N

f([U ]) = log2(|θ[U ]| + 1) −
∑

[U ]≺[V ]

f([V ])

Using this function we use the construction first described in Lemma 5.3 to de-

termine Γ.

• Replace each vertex [U ] in Ω̃ by a complete subgraph containing f([U ])

vertices, which we label v1, v2, . . . , vf([U ]).

• If two [U ] and [V ] are adjacent in Ω̃, then every vertex ui is adjacent to every

vertex vj .

Recall that θ[U ] is the union of all complete subgraphs of VΩ whose star contains

the star of U .

Lemma 5.8. For each [U ] ∈ VΩ̃, log2(|θ[U ]| + 1) = |θ[U ] ∩ j(VΓ)|.

Proof. We prove the lemma via 3 claims.

Claim 1: There is a unique complete subgraph maximal to θ[U ]. By maximal we

mean that there is no larger complete subgraph in θ[U ].

Since Γ is finite, there exists a complete subgraph X in θ[U ] such that |X| = m and

m = max{|Y | : Y ∈ θ[U ], Y ∈ VΩ}. Suppose that there exist two distinct complete



RIGIDITY OF RIGHT-ANGLED COXETER GROUPS 22

subgraphs X, Y ∈ θ[U ] where |X| = |Y | = m. There is some vertex ai ∈ X, ai /∈ Y .

So consider Y ∪ {ai}. Since ai ∈ X, and [X] � [U ], [ai] � [U ]. Thus Y ∪ {ai} ∈ VΩ

and star(Y ∪ {ai}) ⊇ star(U). Since |Y ∪ {ai}| = m + 1, this contradicts the fact

that |Y | was maximal.

Lets X be the largest complete subgraph in θ[U ] and let m = |X|.

Claim 2: If Z ⊂ X, then Z ∈ θ[U ]. Let Z ⊂ X. Then every complete subgraph

containing X contains Z. Thus [X] � [Z]. So by definition Z ∈ θ[U ].

Claim 3: If Z is not contained in X, then Z /∈ θ[U ].

Let Z be a complete subgraph that is not a subset of X. So there exists an

ai ∈ Z with ai ∈ X. Suppose that Z ∈ theta[U ], then star(Z) ⊇ star(U). Consider

X ∪ {ai}. Since ai ∈ Z, and [Z] � [U ], [ai] � [U ]. Thus X ∪ {ai} ∈ VΩ and

star(X ∪ {ai}) ⊇ star(U). Since |X ∪ {ai}| = m + 1, this contradicts the fact that

|X| was maximal. Thus Z /∈ θ[U ].

Now consider how many complete subgraphs are in θ[U ]. There are m vertices in

X. By claim 3, only subsets of X will be in θ[vi]. By claim 2, every subset of X will

be in θ[U ]. So θ[U ] contains 2m − 1 complete subgraphs, m of which are singleton

complete subgraphs. �

Now we use this lemma inductively to show that f([j(vi)]) is the number of

elements in [vi].

Lemma 5.9. For each [U ] ∈ VΩ̃, f([U ]) = |[U ] ∩ j(VΓ)|.

Proof. We proceed by induction on the height of equivalence classes.

Let h([U ]) = 1. Then θ[U ] = [U ]. By Lemma 5.8, f([U ]) is the number of singleton

complete subgraphs in [U ].

Assume that f([U ]) correctly determines the number of singleton complete sub-

graphs for each [U ] where 1 ≤ h([U ]) ≤ n. Suppose [U ] has height n + 1. We

defined f([U ]) as log2(|θ[U ]|+1)−
∑

[U ]≺[V ] f([V ]). By Lemma 5.8, log2(|θ[U ]|+1) is

the number of singleton complete subgraphs whose star contains the star(U). By

hypothesis,
∑

[U ]≺[V ] f([V ]) is the number of singleton complete subgraphs whose
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star strictly contains the star of U . It follows that log2(|θ[U ]|+ 1)−
∑

[U ]≺[V ] f([V ])

is the number of singleton complete subgraphs in [U ]. �

Proposition 2. Let Γ be a graph and Ω be the graph constructed from Γ as in

Section 4. Then Ω determines the isomorphism type of Γ.

Proof. In Lemma 5.5 we showed that Γ̃ →֒ Ω̃. In Lemma 5.9 we showed that for

[U ] ∈ VΩ̃, f([U ]) is the order of j(Γ)∩ [U ]. Thus by Lemma 5.3, Ω determines Γ. �

6. An Example

We examine an example to elucidate the construction of Ω and it’s inverse. Let

Γ be as in Figure 5.

c db

a

e

f g

Figure 5. Example Γ.

We construct Ω. To do this we must determine all the complete subgraphs of Γ.

Then we must determine which pairs of complete subgraphs are both subgraphs of

a complete subgraph. The set of complete subgraphs is:

{a, b, c, d, e, f, g, ab, ac, bc, be, cd, ce, ef, eg, fg, abc, bce, efg}

. Since the complete subgraphs a, b, c, ab, bc, ac, abc are all subgraphs of abc, they

are pairwise adjacent in Ω. This is illustrated by the triangle with corners a, b and

c in Figure 6. The rest of Ω is constructed similarly.
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fg

efg
egfe

f g

e

be ce
bce

c db

a

ab ac
abc

cd

bc

Figure 6. Example Ω.

Next we determine which vertices share the same star. In Figure 7 we have circled

all the vertices in Ω that share the same star. With this information we can then

build Ω̃. We insert a vertex for each circle, then connect two vertices if elements

contained in the corresponding circles are adjacent(see Figure 8).

At this point we our ready to use the procedure to reconstruct Γ. To determine Γ

we need to find the height, θ[vi], and calculate f([vi]) for each equivalence class [vi].

For example consider [a]. Let’s determine all the strictly ascending chains starting

with [a]: we have [a], [a] ≺ [c] and [a] ≺ [b] ≺ [c]. Thus [a] has height 3. Now

we determine θ[a]. It is the set {a, b, c, ab, ac, bc, abc} since those are the vertices

in [a], [b] and [c]. Note [c] has height one and there is only one vertex in θ[c] so

f([c]) = 1. We also note that [b] has height two, θ[c] = {b, c, bc}. So f([b]) = 1.

Finally we compute:
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fg

efg
egfe

f g

e

be ce
bce

c db

a

ab ac
abc

bc

cd

Figure 7. Example Ω with Equivalence Classes Circled.

[f]

[e]

[bce]

[b] [c] [d]

[a]

Figure 8. Example Ω̃.

f([a]) = log2(|θ[a]| + 1) −
∑

[vi]≺[a]

f([vj ])

= log2(|7| + 1) − (f([b]) + f([c]))

= 3 − (1 + 1)

= 1.
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We make similar calculations for all the other [vi].

[vi] h(vi) θ[vi] |θ[vi]| log2(|θ[vi]| + 1)
∑

[vi]≺[vj ]
f([vj ]) f([vi])

[a] 3 {a, b, c, ab, ac, bc, abc} 7 3 2 1
[b] 2 {b, bc, c} 3 2 1 1
[c] 1 {c} 1 1 0 1
[d] 2 {d, cd, c} 3 2 1 1

[bce] 3 {b, c, e, be, ce, bc, bce} 7 3 3 0
[e] 1 {e} 1 0 1
[f ] 2 {e, f, g, ef, eg, fg, efg} 7 3 1 2

Now we replace each vertex in Ω̃ with a complete subgraph with f([vi]) vertices. A

set of vertices corresponding to f([vi]) is adjacent to vertices corresponding to f([vj ])

if and only if [vi] is adjacent to [vj ]. The resultant graph is presented in figure 9.

From Figures 5 and 9 it is clear that the reconstructed graph is the original graph

Γ

Figure 9. Reconstruction of Γ.
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7. Future Work

The methods of this proof might be used to prove the rigidity of even Coxeter

groups. There are several ideas and methods in this proof that are specific to right-

angled Coxeter groups. For example, the deletion conditions is different for different

classes of Coxeter groups. However, the basic structure of this proof might extend

to even Coxeter groups. In this case even Coxeter groups have a unique associated

even labeled graph.

References

[1] P. Bahls. The isomorphism problem in Coxeter groups. Imperial College Press, London, 2005.
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