Statistics of the Gauss-Kuzmin Distribution Steven Duff Advisor: Nathan Ryan **Bucknell University**

Simple Continued Fractions Expansions

Any real number x can be has a unique simple cf expansion:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 +$$

Terms $\{a_n\}$: Sequence of integers where $a_k > 0$ for k > 0. **Convergents** $\frac{p_n}{q_n}$: A quotient equal to a truncated cf expansion (i.e. $\frac{p_n}{q_n} = [a_0, a_1, ..., a_n]$).

Infinite cf's: A cf expansion with an infinite number of terms. x has an infinite cf expansion if and only if it is irrational.

Gauss-Kuzmin Distribution

For almost all $x \in \mathbb{R}$, $\mathsf{Prob}(a_n = k) = \log_2\left(1 + rac{1}{k(k+2)}
ight)$, with a maximum error term $\frac{A}{k(k+1)}e^{-B\sqrt{n-1}}$, where A, B

are positive constants.

This error term approaches 0 as *n* grows, so the distribution becomes exact in the limit of the terms. This holds for all $x \in K$, where $K \subset \mathbb{R}$ is a set of full measure. There exists an exceptional set Z of measure zero for which this distribution does not hold.

Distribution of 1-15 in First 1000 Terms of CF Expansions

Motivation

Not much is known about the exceptional set Z, which the Gauss-Kuzmin distribution does not hold for. Finding elements contained in Z will help us characterize Z. We developed a framework for experiments that will provide statistical evidence to which set any real x is contained in. To develop this test, we first developed a method to randomly generating numbers that follow Gauss-Kuzmin.

Some Known Elements of the Exceptional Set Z

- **Rational numbers:** Rational numbers have finite cf expansions, and thus can not follow Gauss-Kuzmin for a_n if n is too large.
- **Bounded cf's:** A bounded cf has a maximum term. This means that any integer greater than this maximum term has probability zero of occurring.
- Quadratic irrationals (i.e. $\{\frac{a+b\sqrt{c}}{d} | a, b, c, d \in \mathbb{Z}\}$): These have periodic cf expansions. This means that their expansions will be bounded and thus they are contained in Z.

Generating Random Continued Fractions

- **Original Method:** Put $r_n := a_n + \frac{1}{a_{n+1} + \frac{1}{r_n}} = a_n + \frac{1}{r_n + 1}$ Randomly choose $x \in (0, 1)$ $r_0 = x$
- $\blacktriangleright a_n = \lfloor r_n \rfloor$
- $ightarrow r_{n+1} = rac{1}{r_n a_n}$

- **Our Method:**
- Put $\frac{p'_n}{a'_n} := [a_0, a_1, \dots, a_n + 1]$
- Randomly choose $x \in (0, 1)$
- $a_0 = |x|$
- ► Randomly choose $x_n \in \left[\frac{p_n}{q_n}, \frac{p'_n}{q'_n}\right]$
- $\blacktriangleright r_{n+1} = \frac{p_{n-1} x_n \cdot q_{n-1}}{x_n \cdot q_n p_n}$ $a_{n+1} = |r_{n+1}|$
- The benefit of the new method is that it calls on the random real generator every term, which will increase the randomness of these cf's.

Experiment

For any real x, we want to know whether or not x follows Gauss-Kuzmin. $H_0: x \in K, H_a: x \in Z$

We will use a χ^2 test to determine this. This test has the form:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

 O_i = observed number in i^{th} bin, E_i = expected number in i^{th} bin **Bins:** (1), (2), (3), (4), (5), (6 - 10), (11+) **Terms:** 1 - 150

Applications

Question: Does <i>eⁿ</i> for positive			
integers <i>n</i> follow the Gauss Kuzmin			
Distribution? We will run χ^2 tests			
and use p-values from the million			
random cf's we generated.			

	•	
	χ^2	p-v
е	118.94	<
e^2	292.385	<
e^3	1.200	
e^4	8.801	
e^5	3.541	-
e^{6}	4.424	-
e^7	2.716	-
e^8	9.579	

Conclusion: We can say with strong confidence that $e, e^2 \in Z$, but it appears that e^n for n > 2 is contained in K. The reasons for this could be investigated further.

Further Questions: We know that the square roots of integers (quadratic irrationals) do not follow Gauss-Kuzmin. What about other roots of integers? We could investigate if the families of n^{th} roots of integers for n > 2 are in Z.

References

- Gauss, Karl Friedrich (1777-1855): Struik, D. J. A Concise History of Mathematics. p. 142f.
- Miller, Steven J., and Ramin Takloo-Bighash. An Invitation to Modern Number Theory. Princeton: Princeton UP, 2006. Print.
- William Stein. Sage: Open Source Mathematical Software (Version 4.3.1). The Sage Group, 2010

