A Combinatorial Interpretation of Coefficients Arising in the Quantum Polynomial Ring

Justin Lambright

Lehigh University

October 25, 2009

Quantum Polynomial Ring

Definition

$$\mathcal{A}(n;q) = \mathbb{C}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]\langle x_{1,1}, \ldots, x_{n,n}\rangle$$

such that the following relations hold

$$x_{i,\ell}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{i,\ell}$$

$$x_{j,k}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{j,k}$$

$$x_{j,k}x_{i,\ell} = x_{i,\ell}x_{j,k}$$

$$x_{j,\ell}x_{i,k} = x_{i,k}x_{j,\ell} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x_{i,\ell}x_{j,k},$$

for all indices $1 \le i < j \le n$ and $1 \le k < \ell \le n$.

Grading

FACT

The quantum polynomial ring has a Grading by degree

$$\mathcal{A}(n;q) = \bigoplus_{r \geq 0} \mathcal{A}_r(n;q),$$

where $A_r(n;q)$ consists of all degree r polynomials.

Multigrading

FACT

There is a finer multigrading by pairs of multisets

$$\mathcal{A}(n;q) = \bigoplus_{r \geq 0} \bigoplus_{\substack{L,M \\ |L| = |M| = r}} \mathcal{A}_{L,M}(n;q).$$

Example

$$x_{1,1}^3 \in \mathcal{A}_{111,111}(n;q),$$

 $x_{1,1}x_{1,2}x_{2,3}$ and $x_{1,1}x_{1,3}x_{2,2} \in \mathcal{A}_{112,123}(n;q),$
while all three belong to $\mathcal{A}_3(n;q).$

Immanant Space

Let
$$[n] = \{1, \ldots, n\}.$$

Definition

The *Immanant Space* is defined as

$$\mathcal{A}_{[n],[n]}(n;q) = \operatorname{span}\{x_{1,\nu_1} \cdots x_{n,\nu_n} \mid \nu \in \mathfrak{S}_n\}$$
$$= \operatorname{span}\{x^{e,\nu} \mid \nu \in \mathfrak{S}_n\}.$$

We call the set of monomials $\{x^{e,v} \mid v \in \mathfrak{S}_n\}$ the *natural basis* of the immanant space.

More on the Immanant Space

FACT

For any fixed $u \in \mathfrak{S}_n$,

$$\mathcal{A}_{[n],[n]}(n;q) = \operatorname{span}\{x_{u_1,v_1} \cdots x_{u_n,v_n} \mid v \in \mathfrak{S}_n\}$$
$$= \operatorname{span}\{x^{u,v} \mid v \in \mathfrak{S}_n\}.$$

Example

For
$$n=3$$
,

$$\mathcal{A}_{123,123}(3;q) = \operatorname{span}\{x_{3,1}x_{2,2}x_{1,3}, x_{3,2}x_{2,1}x_{1,3}, x_{3,1}x_{2,3}x_{1,2}, \\ x_{3,2}x_{2,3}x_{1,1}, x_{3,3}x_{2,1}x_{1,2}, x_{3,3}x_{2,2}x_{1,1}\} \\ = \operatorname{span}\{x^{w_0,v} \mid v \in \mathfrak{S}_n\}.$$

Importance of Immanant Space

In some sense, all multigraded components $A_{L,M}(n;q)$ can be understood in terms of the immanant space $A_{[n],[n]}(n;q)$.

Question

What is the transition matrix relating $\{x^{u,v} \mid v \in \mathfrak{S}_n\}$ for fixed u and $\{x^{e,v} \mid v \in \mathfrak{S}_n\}$?

p-polynomials

Definition

Define the polynomials $p_{u,v,w}(q)$ by

$$x^{u,v} = \sum_{w \geq u^{-1}v} p_{u,v,w} (q^{\frac{1}{2}} - q^{\frac{-1}{2}}) x^{e,w}.$$

It turns out $p_{u,v,w}(q) \in \mathbb{N}[q]$, which we can see by looking at the relations.

Example

$$x^{213,213} = x_{2,2}x_{1,1}x_{3,3} = x_{1,1}x_{2,2}x_{3,3} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x_{1,2}x_{2,1}x_{3,3}$$
$$= x^{123,123} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x^{123,213}.$$

Thus, $p_{213,213,123}(q) = 1$ and $p_{213,213,213}(q) = q$.

A combinatorial interpretation

Theorem

Fix $s_{i_1} \cdots s_{i_\ell}$ a reduced expression for u, then the coefficient of q^k in $p_{u,v,w}(q)$ is the number of sequences $(\pi^{(0)} = v, \pi^{(1)}, \dots, \pi^{(\ell)} = w)$ of permutations such that

- **1** $\pi^{(j)} \in \{s_{i_j}\pi^{(j-1)}, \pi^{(j-1)}\}\$ for $j = 1, \dots, \ell$,
- **2** $\pi^{(j)} = s_{i_j} \pi^{(j-1)}$ if $s_{i_j} \pi^{(j-1)} > \pi^{(j-1)}$,
- **3** $\pi^{(j)} = \pi^{(j-1)}$ for exactly k values of j.

Bar Involution

There is a certain map which comes up in the study of quantum groups called the *bar involution*. The bar involution on $\mathcal{A}_{[n],[n]}(n;q)$ is defined by

Definition

$$\overline{X_{u_1,v_1}\cdots X_{u_n,v_n}}=X_{u_n,v_n}\cdots X_{u_1,v_1},$$

because $w_0u = u_n \cdots u_1$ we can say

$$\overline{x^{u,v}} = x^{w_0 u, w_0 v}$$
.

More on Bar Involution

FACT

 $\{\overline{x^{e,v}} \mid v \in \mathfrak{S}_n\}$ is a basis for the immanant space because it is $\{x^{w_0,w_0v} \mid v \in \mathfrak{S}_n\}$.

Example

$$\overline{x^{123,132}} = x^{321,231}$$

$$= x^{123,132} + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})(x^{123,231} + x^{123,312}) + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})^2 x^{123,321}$$

Application

Question

What is the transition matrix between $\{\overline{x^{e,v}} \mid v \in \mathfrak{S}_n\}$ and $\{x^{e,v} \mid v \in \mathfrak{S}_n\}$?

Answer

This is a special case of the previous theorem,

$$\overline{x^{e,v}} = \sum_{w > v} p_{w_0, w_0 v, w} (q^{\frac{1}{2}} - q^{\frac{1}{2}}) x^{e, w}.$$

The bar involution is related to (inverse) Kazhdan-Lusztig polynomials.

