A new construction of Kazhdan-Lusztig's representations of the Hecke algebra

Charles Buehrle

Department of Mathematics Lehigh University

AMS Special Session: Algebraic Combinatorics

October 25, 2009

The symmetric group is generated by $\{s_i \mid 1 \leq i \leq n-1\}$ with relations

The symmetric group is generated by $\{s_i \mid 1 \le i \le n-1\}$ with relations

$$s_i^2 = e, 1 \le i \le n-1$$

The symmetric group is generated by $\{s_i \mid 1 \le i \le n-1\}$ with relations

$$s_i^2 = e,$$
 $1 \le i \le n-1$
 $s_i s_j s_i = s_j s_i s_j,$ $|i-j| = 1$

The symmetric group is generated by $\{s_i \mid 1 \le i \le n-1\}$ with relations

$$s_i^2 = e,$$
 $1 \le i \le n-1$
 $s_i s_j s_i = s_j s_i s_j,$ $|i-j| = 1$
 $s_i s_j = s_j s_i,$ $|i-j| \ge 2.$

The symmetric group is generated by $\{s_i \mid 1 \le i \le n-1\}$ with relations

$$s_i^2 = e,$$
 $1 \le i \le n-1$
 $s_i s_j s_i = s_j s_i s_j,$ $|i-j| = 1$
 $s_i s_j = s_j s_i,$ $|i-j| \ge 2.$

 $v \in \mathfrak{S}_n$ is a product of generators

$$v=s_{i_1}\cdots s_{i_\ell}$$
.

If $\ell = \ell(v)$ is minimal it is the length of v.

Elements of \mathfrak{S}_n are associated with permutations by the action

$$s_i \circ (v_1 \cdots v_n) = v_1 \cdots v_{i-1} v_{i+1} v_i v_{i+2} \cdots v_n.$$

Elements of \mathfrak{S}_n are associated with permutations by the action

$$s_i \circ (v_1 \cdots v_n) = v_1 \cdots v_{i-1} v_{i+1} v_i v_{i+2} \cdots v_n.$$

Example

In \mathfrak{S}_4 ,

- $s_1 = 2134$
- $s_3 s_1 s_2 s_1 = 3241$

Elements of \mathfrak{S}_n are associated with permutations by the action

$$s_i \circ (v_1 \cdots v_n) = v_1 \cdots v_{i-1} v_{i+1} v_i v_{i+2} \cdots v_n.$$

Example

In \mathfrak{S}_4 ,

- $s_1 = 2134$
- $s_3 s_1 s_2 s_1 = 3241$

The group algebra $\mathbb{C}[\mathfrak{S}_n]$ is the \mathbb{C} -module with the elements of \mathfrak{S}_n as generators.

 λ a partition of n.

 λ a partition of n. A Young tableau is a diagram with λ_i boxes in row i filled with $1, \ldots, n$.

 λ a partition of n. A Young tableau is a diagram with λ_i boxes in row i filled with $1, \ldots, n$. A tableau is standard if entries increases left to right and top to bottom.

 λ a partition of n. A Young tableau is a diagram with λ_i boxes in row i filled with $1, \ldots, n$. A tableau is standard if entries increases left to right and top to bottom.

The superstandard tableau of shape λ , $T(\lambda)$, is the tableau in reading order.

 λ a partition of n. A Young tableau is a diagram with λ_i boxes in row i filled with $1, \ldots, n$. A tableau is standard if entries increases left to right and top to bottom.

The superstandard tableau of shape λ , $T(\lambda)$, is the tableau in reading order.

Example

```
\lambda = (4, 3, 1),
1 3 6 7
2 4 8
```

 λ a partition of n. A Young tableau is a diagram with λ_i boxes in row i filled with $1, \ldots, n$. A tableau is standard if entries increases left to right and top to bottom.

The superstandard tableau of shape λ , $T(\lambda)$, is the tableau in reading order.

Example

$$\lambda = (4,3,1),$$
1 3 6 7
2 4 8
 $T(\lambda) = 5$
6 7

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

Example

w = 3241.

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

Example

$$w = 3241.$$

3

1

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

Example

$$w = 3241.$$

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

Example

$$w = 3241.$$

2 3

There is a bijection from $v \in \mathfrak{S}_n$ to ordered pairs of standard tableaux P(v), Q(v) by Robinson-Schensted.

Example

$$w = 3241.$$

$$P(w) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & & \end{pmatrix}$$

$$Q(w) = \frac{1}{3} \quad 2 \quad 4$$

The Bruhat order on \mathfrak{S}_n

For $v, w \in \mathfrak{S}_n$ we say

$$v \leq w$$

if $v = s_{i_1} \cdots s_{i_\ell}$ is a subexpression of w.

The Bruhat order on \mathfrak{S}_n

For $v, w \in \mathfrak{S}_n$ we say

$$v \leq w$$

if $v = s_{i_1} \cdots s_{i_\ell}$ is a subexpression of w.

Example

For \mathfrak{S}_3 the Hasse diagram of the Bruhat order is

 $\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

 $\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

$$\widetilde{T}_{s_i}^2 = (q^{\frac{1}{2}} - q^{\frac{1}{2}})\widetilde{T}_{s_i} + \widetilde{T}_e, \qquad 1 \le i \le n-1$$

 $\mathbb{C}[q^{\frac{1}{2}},q^{\frac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

$$\begin{split} \widetilde{T}_{s_i}^2 &= (q^{\frac{1}{2}} - q^{\frac{1}{2}})\widetilde{T}_{s_i} + \widetilde{T}_e, \\ \widetilde{T}_{s_i}\widetilde{T}_{s_j}\widetilde{T}_{s_i} &= \widetilde{T}_{s_j}\widetilde{T}_{s_i}\widetilde{T}_{s_j}, \end{split} \qquad 1 \leq i \leq n-1 \\ |i-j| = 1 \end{split}$$

 $\mathbb{C}[q^{\frac{1}{2}},q^{\frac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

$$egin{aligned} \widetilde{T}_{s_i}^2 &= ig(q^{rac{1}{2}} - ar{q^{rac{1}{2}}}ig)\widetilde{T}_{s_i} + \widetilde{T}_e, & 1 \leq i \leq n-1 \ \widetilde{T}_{s_i}\widetilde{T}_{s_j}\widetilde{T}_{s_i} & \widetilde{T}_{s_j}\widetilde{T}_{s_j}, & |i-j| = 1 \ \widetilde{T}_{s_i}\widetilde{T}_{s_i} & \widetilde{T}_{s_i}\widetilde{T}_{s_i}, & |i-j| \geq 2. \end{aligned}$$

 $\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

$$\begin{split} \widetilde{T}_{s_{i}}^{2} &= (q^{\frac{1}{2}} - q^{\frac{1}{2}})\widetilde{T}_{s_{i}} + \widetilde{T}_{e}, & 1 \leq i \leq n - 1 \\ \widetilde{T}_{s_{i}}\widetilde{T}_{s_{j}}\widetilde{T}_{s_{i}} &= \widetilde{T}_{s_{j}}\widetilde{T}_{s_{i}}\widetilde{T}_{s_{j}}, & |i - j| = 1 \\ \widetilde{T}_{s_{i}}\widetilde{T}_{s_{j}} &= \widetilde{T}_{s_{j}}\widetilde{T}_{s_{j}}, & |i - j| \geq 2. \end{split}$$

The natural basis of $H_n(q)$ is the set of

$$\widetilde{T}_{v} = \widetilde{T}_{s_{i_1}} \cdots \widetilde{T}_{s_{i_{\ell}(v)}}.$$

 $\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}]$ -algebra generated by $\{\widetilde{T}_{s_i}\,|\,1\leq i\leq n-1\}$ with relations

$$\begin{split} \widetilde{T}_{s_i}^2 &= (q^{\frac{1}{2}} - q^{\frac{1}{2}})\widetilde{T}_{s_i} + \widetilde{T}_{e}, & 1 \leq i \leq n-1 \\ \widetilde{T}_{s_i}\widetilde{T}_{s_j}\widetilde{T}_{s_i} &= \widetilde{T}_{s_j}\widetilde{T}_{s_i}\widetilde{T}_{s_j}, & |i-j| = 1 \\ \widetilde{T}_{s_i}\widetilde{T}_{s_j} &= \widetilde{T}_{s_j}\widetilde{T}_{s_i}, & |i-j| \geq 2. \end{split}$$

The natural basis of $H_n(q)$ is the set of

$$\widetilde{T}_{v} = \widetilde{T}_{s_{i_1}} \cdots \widetilde{T}_{s_{i_{\ell}(v)}}.$$

Notice that $H_n(1) \cong \mathbb{C}[\mathfrak{S}_n]$.

The Kazhdan-Lusztig basis of $H_n(q)$

In [Kazhdan and Lusztig, 1979] a certain basis of $H_n(q)$ is defined for each $v \in \mathfrak{S}_n$ to be

$$C_{\nu}' = \sum_{u < \nu} (q^{\frac{1}{2}})^{\ell(\nu) - \ell(u)} P_{u,\nu}(q) \widetilde{T}_u,$$

where $P_{u,v}(q)$ are the Kazhdan-Lusztig polynomials.

▶ Return to KL immanant

The Kazhdan-Lusztig basis of $H_n(q)$

In [Kazhdan and Lusztig, 1979] a certain basis of $H_n(q)$ is defined for each $v \in \mathfrak{S}_n$ to be

$$C_{\nu}' = \sum_{u \leq \nu} (q^{\frac{1}{2}})^{\ell(\nu) - \ell(u)} P_{u,\nu}(q) \widetilde{T}_u,$$

where $P_{u,v}(q)$ are the Kazhdan-Lusztig polynomials.

Return to KL immanant

Although, $P_{u,v}(q) \in \mathbb{N}[q]$ there is no simple combinatorial description of the coefficients.

Kazhdan-Lusztig preorders on $H_n(q)$

Kazhdan-Lusztig preorders allow construction of $H_n(q)$ -representations.

Right preorder

• $v \lessdot_R u$ if $a_v \neq 0$ in $C'_u \widetilde{T}_w = \sum_{z \in \mathfrak{S}_n} a_z C'_z$, for some w.

Kazhdan-Lusztig preorders on $H_n(q)$

Kazhdan-Lusztig preorders allow construction of $H_n(q)$ -representations.

Right preorder

- $v \lessdot_R u$ if $a_v \neq 0$ in $C'_u \widetilde{T}_w = \sum_{z \in \mathfrak{S}_n} a_z C'_z$, for some w.
- The right preorder \leq_R is the transitive closure of \lessdot_R .

Kazhdan-Lusztig preorders on $H_n(q)$

Kazhdan-Lusztig preorders allow construction of $H_n(q)$ -representations.

Right preorder

- $v \lessdot_R u$ if $a_v \neq 0$ in $C'_u \widetilde{T}_w = \sum_{z \in \mathfrak{S}_n} a_z C'_z$, for some w.
- The right preorder \leq_R is the transitive closure of \leq_R .

Example

For \mathfrak{S}_3 the Hasse diagram of the right preorder is

200

Kazhdan-Lusztig representations of $H_n(q)$

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

$$\begin{array}{lcl} K^{\lambda} & = & \operatorname{span}\{\,C'_u \,|\, Q(u) = T \} \\ & = & \operatorname{span}\{\,C'_u \,|\, u \leq_R v \} / \operatorname{span}\{\,C'_u \,|\, u <_R v \}, \end{array}$$

where $u <_R v$ means $u \leq_R v \nleq_R u$.

Kazhdan-Lusztig representations of $H_n(q)$

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

$$\begin{array}{lcl} K^{\lambda} & = & \operatorname{span}\{\,C'_u \,|\, Q(u) = T \} \\ & = & \operatorname{span}\{\,C'_u \,|\, u \leq_R v \} / \operatorname{span}\{\,C'_u \,|\, u <_R v \}, \end{array}$$

where $u <_R v$ means $u \leq_R v \nleq_R u$.

Matrix representations of $H_n(q)$ obtained by right multiplication of \widetilde{T}_{s_i} on the "basis".

$$X_K^{\lambda}: H_n(q) o \mathrm{GL}(d,\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}])$$

Kazhdan-Lusztig representations of $H_n(q)$

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

$$\begin{array}{lcl} K^{\lambda} & = & \operatorname{span}\{\,C'_u \,|\, Q(u) = T \} \\ & = & \operatorname{span}\{\,C'_u \,|\, u \leq_R v \} / \operatorname{span}\{\,C'_u \,|\, u <_R v \}, \end{array}$$

where $u <_R v$ means $u \leq_R v \nleq_R u$.

Matrix representations of $H_n(q)$ obtained by right multiplication of \widetilde{T}_{s_i} on the "basis".

$$X_K^{\lambda}: H_n(q) o \mathrm{GL}(d,\mathbb{C}[q^{rac{1}{2}},q^{rac{1}{2}}])$$

Example

$$X_{\mathcal{K}}^{(2,1)}(\widetilde{T}_{s_1}) = egin{bmatrix} q^{rac{1}{2}} & 0 \ 1 & -q^{rac{1}{2}} \end{bmatrix} \qquad \qquad X_{\mathcal{K}}^{(2,1)}(\widetilde{T}_{s_2}) = egin{bmatrix} -q^{rac{1}{2}} & 1 \ 0 & q^{rac{1}{2}} \end{bmatrix}$$

Quantum polynomial ring

Define
$$\mathcal{A}(n;q) = \mathbb{C}[q^{\frac{1}{2}},q^{\frac{1}{2}}] \langle x_{1,1},\dots,x_{n,n} \rangle$$
, modulo $x_{i,\ell}x_{j,k} = x_{j,k}x_{i,\ell},$ $x_{i,\ell}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{i,\ell},$ $x_{j,k}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{j,k},$ $x_{j,\ell}x_{i,k} = x_{i,k}x_{j,\ell} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x_{i,\ell}x_{j,k},$ for $1 < i < j < n, 1 < k < \ell < n$.

Quantum polynomial ring

Define
$$\mathcal{A}(n;q) = \mathbb{C}[q^{\frac{1}{2}},q^{\frac{1}{2}}] \langle x_{1,1},\ldots,x_{n,n} \rangle$$
, modulo $x_{i,\ell}x_{j,k} = x_{j,k}x_{i,\ell},$ $x_{i,\ell}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{i,\ell},$ $x_{j,k}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{j,k},$ $x_{j,\ell}x_{i,k} = x_{i,k}x_{j,\ell} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x_{i,\ell}x_{j,k},$

for
$$1 \le i < j \le n, 1 \le k < \ell \le n$$
.

Convenient monomial notation: $x^{v,w} = x_{v_1,w_1} \cdots x_{v_n,w_n}$.

The immanant space and Kazhdan-Lusztig immanants

The immanant space

 $\operatorname{span}\{x^{e,v} \mid v \in \mathfrak{S}_n\}$ an n! dimensional subspace of $\mathcal{A}(n;q)$.

The immanant space and Kazhdan-Lusztig immanants

The immanant space

 $\operatorname{span}\{x^{e,v} \mid v \in \mathfrak{S}_n\}$ an n! dimensional subspace of $\mathcal{A}(n;q)$.

In [Du, 1992] a dual canonical basis called Kazhdan-Lusztig immanants was defined for each $u \in \mathfrak{S}_n$

$$\mathrm{Imm}_{u}(x) = \sum_{v \geq u} (-q^{\frac{1}{2}})^{\ell(u) - \ell(v)} P_{w_0 u, w_0 v}(q) x^{e, v},$$

where $P_{w_0u,w_0v}(q)$ are the inverse Kazhdan-Lusztig polynomials.

▶ Return to KL basis

Generalized submatrices

For *n*-element multisets of [n] $L = (\ell(1), \ldots, \ell(n))$ and $M = (m(1), \ldots, m(n))$ define

$$x_{L,M} = \begin{bmatrix} x_{\ell(1),m(1)} & \cdots & x_{\ell(1),m(n)} \\ \vdots & \ddots & \vdots \\ x_{\ell(n),m(1)} & \cdots & x_{\ell(n),m(n)} \end{bmatrix}.$$

Generalized submatrices

For *n*-element multisets of [n] $L = (\ell(1), \dots, \ell(n))$ and $M = (m(1), \dots, m(n))$ define

$$x_{L,M} = \begin{bmatrix} x_{\ell(1),m(1)} & \cdots & x_{\ell(1),m(n)} \\ \vdots & \ddots & \vdots \\ x_{\ell(n),m(1)} & \cdots & x_{\ell(n),m(n)} \end{bmatrix}.$$

Example

$$L = (1, 1, 2)$$
 and $M = (2, 3, 3)$

$$x_{L,M} = \begin{bmatrix} x_{1,2} & x_{1,3} & x_{1,3} \\ x_{1,2} & x_{1,3} & x_{1,3} \\ x_{2,2} & x_{2,3} & x_{2,3} \end{bmatrix}.$$

Kazhdan-Lusztig representations of $H_n(q)$, again

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

```
\begin{array}{rcl} V^{\lambda} & = & \operatorname{span}\{\operatorname{Imm}_{u}(x) \mid Q(u) = T\} \\ & = & \operatorname{span}\{\operatorname{Imm}_{u}(x) \mid u \geq_{R} v\} / \operatorname{span}\{\operatorname{Imm}_{u}(x) \mid u >_{R} v\}. \end{array}
```

Kazhdan-Lusztig representations of $H_n(q)$, again

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

$$\begin{array}{rcl} V^{\lambda} & = & \mathrm{span}\{\mathrm{Imm}_{u}(x) \mid Q(u) = T\} \\ & = & \mathrm{span}\{\mathrm{Imm}_{u}(x) | u \geq_{R} v\} / \mathrm{span}\{\mathrm{Imm}_{u}(x) | u >_{R} v\}. \end{array}$$

 $H_n(q)$ acts on V^{λ} by \widetilde{T}_u permuting columns of x.

$$X_V^{\lambda}:H_n(q)\to \mathrm{GL}(d,\mathbb{C}[q^{\frac{1}{2}},\bar{q^{\frac{1}{2}}}])$$

Kazhdan-Lusztig representations of $H_n(q)$, again

For $\lambda \vdash n$ choose a standard λ -tableau, T, and v such that Q(v) = T. Define

$$\begin{array}{rcl} V^{\lambda} & = & \mathrm{span}\{\mathrm{Imm}_{u}(x) \,|\, Q(u) = T\} \\ & = & \mathrm{span}\{\mathrm{Imm}_{u}(x) | u \geq_{R} v\} / \mathrm{span}\{\mathrm{Imm}_{u}(x) | u >_{R} v\}. \end{array}$$

 $H_n(q)$ acts on V^{λ} by \widetilde{T}_u permuting columns of x.

$$X_V^{\lambda}: H_n(q) o \mathrm{GL}(d, \mathbb{C}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}])$$

Theorem

For any
$$h \in H_n(q)$$
, $X_V^{\lambda}(h) = X_K^{\lambda}(h)$.

Vanishing of Kazhdan-Lusztig immanants

Let M an n-element multiset of [n].

Theorem

If m(i) = m(i+1) in M and $s_i u > u$ then $Imm_u(x_{M,[n]}) = 0$.

Vanishing of Kazhdan-Lusztig immanants

Let M an n-element multiset of [n].

Theorem

If
$$m(i) = m(i+1)$$
 in M and $s_i u > u$ then $Imm_u(x_{M,[n]}) = 0$.

For $n \times n$ matrix A $\mu(A) = \text{row multiplicity partition of } A$.

Dominance order of partitions, $\lambda \leq \mu$ if $\sum_{i=1}^{k} \lambda_i \leq \sum_{i=1}^{k} \mu_i$, for all k.

Theorem

If
$$\operatorname{sh}(u) \not\succeq \mu(x_{M,[n]})$$
 then $\operatorname{Imm}_u(x_{M,[n]}) = 0$.

Vanishing of Kazhdan-Lusztig immanants

Let M an n-element multiset of [n].

Theorem

If
$$m(i) = m(i+1)$$
 in M and $s_i u > u$ then $Imm_u(x_{M,[n]}) = 0$.

For $n \times n$ matrix A $\mu(A) = \text{row multiplicity partition of } A$.

Dominance order of partitions, $\lambda \leq \mu$ if $\sum_{i=1}^{k} \lambda_i \leq \sum_{i=1}^{k} \mu_i$, for all k.

Theorem

If
$$\operatorname{sh}(u) \not\succeq \mu(x_{M,[n]})$$
 then $\operatorname{Imm}_u(x_{M,[n]}) = 0$.

These results are quantum analogues to results in [Rhoades and Skandera, 2009].

Quotient-free Kazhdan-Lusztig representations of $H_n(q)$

For $\lambda \vdash n$, define the multiset $M = (1^{\lambda_1}, \ldots, n^{\lambda_n})$. Define $W^{\lambda} = \operatorname{span}\{\operatorname{Imm}_u(x_{M,[n]}) \mid Q(u) = \mathcal{T}(\lambda)\}.$

Quotient-free Kazhdan-Lusztig representations of $H_n(q)$

For $\lambda \vdash n$, define the multiset $M = (1^{\lambda_1}, \dots, n^{\lambda_n})$. Define

$$W^{\lambda} = \operatorname{span}\{\operatorname{Imm}_{u}(x_{M,[n]}) \mid Q(u) = T(\lambda)\}.$$

Matrix representations obtained by the action of $H_n(q)$ on basis of W^{λ} .

$$X_W^{\lambda}: H_n(q) o \mathrm{GL}(d, \mathbb{C}[q^{\frac{1}{2}}, q^{\overline{\frac{1}{2}}}])$$

Theorem

For any
$$h \in H_n(q)$$
, $X_W^{\lambda}(h) = X_V^{\lambda}(h) = X_K^{\lambda}(h)$.

Quotient-free Kazhdan-Lusztig representations of $H_n(a)$

For $\lambda \vdash n$, define the multiset $M = (1^{\lambda_1}, \dots, n^{\lambda_n})$. Define

$$W^{\lambda} = \operatorname{span}\{\operatorname{Imm}_{u}(x_{M,[n]}) \mid Q(u) = T(\lambda)\}.$$

Matrix representations obtained by the action of $H_n(q)$ on basis of W^{λ} .

$$X_W^{\lambda}: H_n(q) \to \mathrm{GL}(d, \mathbb{C}[q^{\frac{1}{2}}, q^{\overline{\frac{1}{2}}}])$$

Theorem

For any
$$h \in H_n(q)$$
, $X_W^{\lambda}(h) = X_V^{\lambda}(h) = X_K^{\lambda}(h)$.

These results are $H_n(q)$ analogues to results in [B. and Skandera, 2010].

Bibliography

C. Buehrle and M. Skandera.
Relations between the Clausen and Kazhdan-Lusztig representations of the symmetric group.
To appear in *J. Pure Appl. Algebra*, 2010.

J. Du
Canonical bases for irreducible representations of quantum GL_n .

Bull. London Math. Soc., 24(4):325-334, 1992.

D. Kazhdan and G. Lusztig.

Representations of Coxeter groups and Hecke algebras. *Invent. Math.*, 53:165–184, 1979.

B. Rhoades and M. Skandera. Bitableaux and the dual canonical basis of the polynomial ring.

To appear in Adv. in Math., 2009.