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The symmetric group, G,

The symmetric group is generated by {s; |1 </ < n— 1} with
relations

s,-2ze, 1<i<n-1
SiSjSi = SjSiSj, li—jl=1
sisj = sjsi, li—j| > 2.

v € &, is a product of generators

V =S5j "S-

If £ =¢(v) is minimal it is the length of v.
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The symmetric group, G,

Elements of &, are associated with permutations by the action

Sio (VL - Vn) = Vi " Vi_1Vig1ViVig2 - - Vp.

Example
In G4,
m s =2134
B 5351551 = 3241

The group algebra C[&,] is the C-module with the elements of &,
as generators.
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Young Tableaux and Superstandard Tableaux

A a partition of n. A Young tableau is a diagram with \; boxes in
row i filled with 1,...,n. A tableau is standard if entries increases
left to right and top to bottom.

The superstandard tableau of shape A, T(A), is the tableau in
reading order.

Example

A= (4,3,1),
1367 1
2 4 8 T(A\) =5
5 8
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Robinson-Schensted correspondence

There is a bijection from v € &, to ordered pairs of standard
tableaux P(v), Q(v) by Robinson-Schensted.

w = 3241.
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The Bruhat order on G,

For v,w € &, we say
v<w

if v=sj ---sj, is a subexpression of w.

Example

For &3 the Hasse diagram of the Bruhat order is

N

312 231

| =]

213 132

N,
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The Hecke algebra, H,(q)

(C[q%, q_%]—algebra generated by {7'5,. |1 <i<n-—1} with relations

= 1 -1 = .
T =0(92 —q2)Ts + T, 1<i<n-1
:f_s,-fi_sj’i_s,-: 7_51-:,:5,-7_5]7 "._j|:1
T, Ty =Ty Ty, i—j| > 2.

The natural basis of H,(q) is the set of

SRR Tsiz(v)'

Notice that H,(1) = C[G&,].
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In [Kazhdan and Lusztig, 1979] a certain basis of H,(q) is defined
for each v € &, to be

=Y (q2) 1P, (q)T.,

uv

where P, ,(q) are the Kazhdan-Lusztig polynomials.

Although, P, ,(q) € N[g] there is no simple combinatorial
description of the coefficients.
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Kazhdan-Lusztig preorders on H,(q)

Kazhdan-Lusztig preorders allow construction of
H,(q)-representations.

Right preorder

mv<guifa, #0in C,T, = > oce,
m The right preorder <g is the transitive closure of <p.

a,C., for some w.

Example

For G3 the Hasse diagram of the right preorder is
123

N
N

321

213 =312 231 =—=132
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Kazhdan-Lusztig representations of H,(q)

For A = n choose a standard A\-tableau, T, and v such that
Q(v) = T. Define

K» = span{C,|Q(u) =T}
= span{C, |u <gr v}/span{C) | u <g v},

where u <g v means u <gp v £g u.
Matrix representations of H,,(q) obtained by right multiplication of
Ts, on the “basis”.

X : Ha(q) = GL(d, C[q?,q7])

XN (1) XPNT,) = [“’2
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Quantum polynomial ring

Define A(n; q) = (C[q%, q_%] (X1,1,---+Xn,n), modulo

XipXjk = XjkXil,
1
XioXik =  q2X; kX,
1
Xj kXik = q92Xi kX k,
1 -1
XjeXik = XikXjie+ (92 — q2)xieXj i

for1<i<j<nl<k</{<n.

Convenient monomial notation: x"'" = Xy, w; * = Xv,,w,y-
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The immanant space and Kazhdan-Lusztig
immanants

The immanant space

span{x®"|v € &,} an n! dimensional subspace of A(n; q).

In [Du, 1992] a dual canonical basis called Kazhdan-Lusztig
immanants was defined for each u € G,

Imm,(x) = 3 (—g2) @ Py nu(@)x,

v>u

where Py, wov(q) are the inverse Kazhdan-Lusztig polynomials.

» Return to KL basis



Generalized submatrices

For n-element multisets of [n] L = (¢(1),...,4(n)) and
M = (m(1),..., m(n)) define

Xe(1),m(1) " Xe(1),m(n)
XM = : :

Xe(n),m(1) "7 Xe(n),m(n)



Generalized submatrices

For n-element multisets of [n] L = (¢(1),...,4(n)) and
M = (m(1),..., m(n)) define

Xe(1),m(1) " Xe(1),m(n)
XM = : :

Xe(n),m(1) "7 Xe(n),m(n)

Example

L=(1,1,2) and M = (2,3,3)

X12 X13 X13
XLm = |X12 X13 X13]| -

X22 X23 X23



Kazhdan-Lusztig representations of H,(q), again

For A F n choose a standard A-tableau, T, and v such that
Q(v) = T. Define
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Kazhdan-Lusztig representations of H,(q), again

For A F n choose a standard A-tableau, T, and v such that
Q(v) = T. Define

v} = span{Imm,(x)| Q(v) = T}

= span{Imm,(x)|u >g v}/span{Imm,(x)|u >g v}.
(S)

H,(q) acts on V* by T, permuting columns of x.

X3 : Ha(q) = GL(d,C[q?, 7))

For any h € Hn(q), X{(h) = X2 (h).
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Vanishing of Kazhdan-Lusztig immanants

Let M an n-element multiset of [n].

Theorem
If m(i) = m(i +1) in M and sju > u then Imm,(xp,[)) = 0.

For n x n matrix A
1(A) = row multiplicity partition of A.

Dominance order of partitions, A < p if
S N < SK L i, for all k.

Theorem
If sh(u) % pu(xm[n)) then Tmmy(xpy,[n) = O.

These results are quantum analogues to results in
[Rhoades and Skandera, 2009].
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Quotient-free Kazhdan-Lusztig representations of
Ha(q)

For A I- n, define the multiset M = (1, ..., n*). Define
WA = span{Immu(xMJ,,]) | Q(u) = T(\)}.
Matrix representations obtained by the action of H,(g) on basis of

wA.
Xiy : Ha(q) — GL(d,Clq?, q2])

Theorem
For any h € Hp(q), X\?\v(h) = X&(h) = Xf}(h)'

These results are H,(qg) analogues to results in
[B. and Skandera, 2010].
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