POSET EDGE-LABELLINGS AND LEFT MODULARITY

PETER MCNAMARA AND HUGH THOMAS

Abstract

It is known that a graded lattice of rank n is supersolvable if and only if it has an EL-labelling where the labels along any maximal chain are exactly the numbers $1,2, \ldots, n$ without repetition. These labellings are called S_{n} EL-labellings, and having such a labelling is also equivalent to possessing a maximal chain of left modular elements. In the case of an ungraded lattice, there is a natural extension of S_{n} EL-labellings, called interpolating labellings. We show that admitting an interpolating labelling is again equivalent to possessing a maximal chain of left modular elements. Furthermore, we work in the setting of an arbitrary bounded poset as all the above results generalize to this case. We conclude by applying our results to show that the lattice of non-straddling partitions, which is not graded in general, has a maximal chain of left modular elements.

Version of 12 July 2004

1. Introduction

An edge-labelling of a poset P is a map from the edges of the Hasse diagram of P to \mathbb{Z}. Our primary goal is to express certain classical properties of P in terms of edge-labellings admitted by P. The idea of studying edge-labellings of posets goes back to [12]. An important milestone was [3], where A. Björner defined ELlabellings, and showed that if a poset admits an EL-labelling, then it is shellable and hence Cohen-Macaulay. We will be interested in a subclass of EL-labellings, known as S_{n} EL-labellings. In [13], R. Stanley introduced supersolvable lattices and showed that they admit S_{n} EL-labellings. Examples of supersolvable lattices include distributive lattices, the lattice of partitions of $[n]$, the lattice of non-crossing partitions of $[n]$ and the lattice of subgroups of a supersolvable group (hence the terminology). It was shown in [9] that a finite graded lattice of rank n is supersolvable if and only if it admits an S_{n} EL-labelling. In many ways, this characterization of lattice supersolvability in terms of edge-labellings serves as the starting point for our investigations.

For basic definitions concerning partially ordered sets, see [14]. We will say that a poset P is bounded if it contains a unique minimal element and a unique maximal element, denoted $\hat{0}$ and $\hat{1}$ respectively. All the posets we will consider will be finite and bounded. A chain of a poset P is said to be maximal if it is maximal under inclusion. We say that P is graded if all the maximal chains of P have the same length, and we call this length the rank of P. We will write $x \lessdot y$ if y covers x in P and $x \leq y$ if y either covers or equals x. The edge-labelling γ of P is said to be an EL-labelling if for any $y<z$ in P,
(i) there is a unique unrefinable chain $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$ such that $\gamma\left(w_{0}, w_{1}\right) \leq \gamma\left(w_{1}, w_{2}\right) \leq \cdots \leq \gamma\left(w_{r-1}, w_{r}\right)$, and

Figure 1
(ii) the sequence of labels of this chain (referred to as the increasing chain from y to z), when read from bottom to top, lexicographically precedes the labels of any other unrefinable chain from y to z.
This concept originates in [3]; for the case where P is not graded, see [4, 5]. If P is graded of rank n with an EL-labelling γ, then γ is said to be an S_{n} EL-labelling if the labels along any maximal chain of P are all distinct and are elements of $[n]$. In other words, for every maximal chain $\hat{0}=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{n}=\hat{1}$ of P, the map sending i to $\gamma\left(w_{i-1}, w_{i}\right)$ is a permutation of $[n]$. Note that the second condition in the definition of an EL-labelling is redundant in this case.

Example 1.1. Any finite distributive lattice has an S_{n} EL-labelling. Let L be a finite distributive lattice of rank n. By the Fundamental Theorem of Finite Distributive Lattices [2, p. 59, Thm. 3], that is equivalent to saying that $L=J(Q)$, the lattice of order ideals of some n-element poset Q. Let $\omega: Q \rightarrow[n]$ be a linear extension of Q, i.e., any bijection labelling the vertices of Q that is order-preserving (if $a<b$ in Q then $\omega(a)<\omega(b)$). This labelling of the vertices of Q defines a labelling of the edges of $J(Q)$ as follows. If y covers x in $J(Q)$, then the order ideal corresponding to y is obtained from the order ideal corresponding to x by adding a single element, labeled by i, say. Then we set $\gamma(x, y)=i$. This gives us an S_{n} EL-labelling for $L=J(Q)$. Figure 1 shows a labelled poset and its lattice of order ideals with the appropriate edge-labelling.

A finite lattice L is said to be supersolvable if it contains a maximal chain, called an M-chain of L, which together with any other chain in L generates a distributive sublattice. We can label each such distributive sublattice by the method described in Example 1.1 in such a way that the M-chain is the unique increasing maximal chain. As shown in [13], this will assign a unique label to each edge of L and the resulting global labelling of L is an S_{n} EL-labelling.

There is also a characterization of lattice supersolvability in terms of left modularity. Given an element x of a finite lattice L, and a pair of elements $y \leq z$, it is always true that

$$
\begin{equation*}
(x \vee y) \wedge z \geq(x \wedge z) \vee y \tag{1}
\end{equation*}
$$

The element x is said to be left modular if, for all $y \leq z$, equality holds in (1). Following A. Blass and B. Sagan [6], we will say that a lattice itself is left modular if it contains a left modular maximal chain, that is, a maximal chain each of whose
elements is left modular. (One might guess that we should define a lattice to be left modular if all of its elements are left modular, but this is equivalent to the definition of a modular lattice.) As shown in [13], any M-chain of a supersolvable lattice is always a left modular maximal chain, and so supersolvable lattices are left modular. Furthermore, it is shown by L. S.-C. Liu [7] that if L is a finite graded lattice with a left modular maximal chain M, then L has an S_{n} EL-labelling with increasing maximal chain M. In turn, as shown in [9], this implies that L is supersolvable, and so we conclude the following.

Theorem 1. Let L be a finite graded lattice of rank n. Then the following are equivalent:
(1) L has an S_{n} EL-labelling,
(2) L is left modular,
(3) L is supersolvable.

It is shown in [13] that if L is upper-semimodular, then L is left modular if and only if L is supersolvable. Theorem 1 is a considerable strengthening of this. Here we used S_{n} EL-labellings to connect left modularity and supersolvability. It is natural to ask for a more direct proof that (2) implies (3); such a proof has recently been provided by the second author in [15].

Our goal is to generalize Theorem 1 to the case when L is not graded and, moreover, to the case when L is not necessarily a lattice. We now wish to define natural generalizations of S_{n} EL-labellings and of maximal left modular chains.

Definition 1.2. An EL-labelling γ of a poset P is said to be interpolating if, for any $y \lessdot u \lessdot z$, either
(i) $\gamma(y, u)<\gamma(u, z)$ or
(ii) the increasing chain from y to z, say $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$, has the properties that its labels are strictly increasing and that $\gamma\left(w_{0}, w_{1}\right)=\gamma(u, z)$ and $\gamma\left(w_{r-1}, w_{r}\right)=\gamma(y, u)$.
Example 1.3. The reader is invited to check that the labelling of the non-graded poset shown in Figure 2 is an interpolating EL-labelling. In fact, the poset shown is the so-called "Tamari lattice" T_{4}. For all positive integers n, there exists a Tamari lattice T_{n} with C_{n} elements, where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the nth Catalan number. More information on the Tamari lattice can be found in $[5, \S 9],[6, \S 7]$ and the references given there, and in $[7, \S 3.2]$, where this interpolating EL-labelling appears. The Tamari lattice is shown to have an EL-labelling in [5] and is shown to be left modular in [6].

If P is graded of rank n and has an interpolating labelling γ in which the labels on the increasing maximal chain reading from bottom to top are $1,2, \ldots n$, then we can check (cf. Lemma 3.2) that γ is an S_{n} EL-labelling.

Our next step is to define left modularity in the non-lattice case. Let x and y be elements of P. We know that x and y have at least one common upper bound, namely $\hat{1}$. If the set of common upper bounds of x and y has a least element, then we denote it by $x \vee y$. Similarly, if x and y have a greatest common lower bound, then we denote it by $x \wedge y$.

Now let w and z be elements of P with $w, z \geq y$. Consider the set of common lower bounds for w and z that are also greater than or equal to y. Clearly, y is in this set. If this set has a greatest element, then we denote it by $w \wedge_{y} z$ and we say

Figure 2. The Tamari lattice T_{4} and its interpolating EL-labelling
that $w \wedge_{y} z$ is well-defined (in $\left.[y, \hat{1}]\right)$. We see that $(x \vee y) \wedge_{y} z$ is well-defined in the poset shown in Figure 3, even though $(x \vee y) \wedge z$ is not. Similarly, let w and y be elements of P with $w, y \leq z$. If the set $\{u \in P \mid u \geq w, y$ and $u \leq z\}$ has a least element, then we denote it by $w \vee^{z} y$ and we say that $w \vee^{z} y$ is well-defined (in $[\hat{0}, z]$). We will usually be interested in expressions of the form $(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$. The reader that is solely interested in the lattice case can choose to ignore the subscripts and superscripts on the meet and join symbols.
Definition 1.4. An element x of a poset P is said to be viable if, for all $y \leq z$ in $P,(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$ are well-defined. A maximal chain of P is said to be viable if each of its elements is viable.
Example 1.5. The poset shown in Figure 3 is certainly not a lattice but the reader can check that the increasing maximal chain is viable.

Definition 1.6. A viable element x of a poset P is said to be left modular if, for all $y \leq z$ in P,

$$
(x \vee y) \wedge_{y} z=(x \wedge z) \vee^{z} y
$$

A maximal chain of P is said to be left modular if each of its elements is viable and left modular, and P is said to be left modular if it possesses a left modular maximal chain.

This brings us to the first of our main theorems.
Theorem 2. Let P be a bounded poset with a left modular maximal chain M. Then P has an interpolating EL-labelling with M as its increasing maximal chain.

The proof of this theorem will be the content of the next section. In Section 3, we will prove the following converse result.
Theorem 3. Let P be a bounded poset with an interpolating EL-labelling. The unique increasing chain from $\hat{0}$ to $\hat{1}$ is a left modular maximal chain.

Figure 3

These two theorems, when compared with Theorem 1, might lead one to ask about possible supersolvability results for bounded posets that aren't graded lattices. This problem is discussed in Section 4. In the case of graded posets, we obtain a satisfactory result, namely Theorem 4. As a consequence, we have given an answer to the question of when a graded poset P has an S_{n} EL-labelling. This has ramifications on the existence of a "good 0-Hecke algebra action" on the maximal chains of the poset, as discussed in [9]. However, it remains an open problem to appropriately extend the definition of supersolvability to ungraded posets.

An explicit application of Theorem 3 is the subject of Section 5. As a variation on non-crossing partitions and non-nesting partitions, we define non-straddling partitions. Ordering the set of non-straddling partitions of $[n]$ by refinement gives a poset, denoted $N S_{n}$, that is generally a non-graded lattice. We define an edgelabelling γ for $N S_{n}$ that is analogous to the usual EL-labelling for the lattice of partitions of $[n]$. In order to show that $N S_{n}$ is left modular, we then prove that γ is an interpolating EL-labelling.

2. Proof of Theorem 2

Throughout this section, we suppose that P is a bounded poset with a left modular maximal chain $M: \hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$. We want to show that P has an interpolating EL-labelling. Our approach will be as follows: we will begin by specifying an edge-labelling γ for P such that M is an increasing chain with respect to γ. We will then prove a series of lemmas which build on the viability and left modularity properties. These culminate with Proposition 2.6 which, roughly speaking, gives a more local definition for γ. We will then be ready to show that γ is an EL-labelling and is, furthermore, an interpolating EL-labelling.

We choose a label set $l_{1}<\cdots<l_{n}$ of natural numbers. (For most purposes, we can let $l_{i}=i$.) We define an edge-labelling γ on P by setting $\gamma(y, z)=l_{i}$ for $y \lessdot z$ if

$$
\left(x_{i-1} \vee y\right) \wedge_{y} z=y \text { and }\left(x_{i} \vee y\right) \wedge_{y} z=z
$$

It is easy to see that γ is well-defined. We will refer to it as the labelling induced by M and the label set $\left\{l_{i}\right\}$. When P is a lattice, this labelling appears, for example, in $[7,16]$. As in [7], we can give an equivalent definition of γ as follows.

Lemma 2.1. Suppose $y \lessdot z$ in P. Then $\gamma(y, z)=l_{i}$ if and only if

$$
i=\min \left\{j \mid x_{j} \vee y \geq z\right\}=\max \left\{j+1 \mid x_{j} \wedge z \leq y\right\}
$$

Proof. That $i=\min \left\{j \mid x_{j} \vee y \geq z\right\}$ is immediate from the definition of γ. By left modularity, $\gamma(y, z)=l_{i}$ if and only if $\left(x_{i-1} \wedge z\right) \vee^{z} y=y$ and $\left(x_{i} \wedge z\right) \vee^{z} y=z$. In other words, $x_{i-1} \wedge z \leq y$ and $x_{i} \wedge z \not \leq y$. It follows that $i=\max \left\{j+1 \mid x_{j} \wedge z \leq y\right\}$.
Lemma 2.2. Suppose that $y \leq w \leq z$ in P and let $x \in M$. Then $\left((x \wedge z) \vee^{z} y\right) \vee^{z} w$ is well-defined and equals $(x \wedge z) \vee^{z} w$. Similarly, $\left((x \vee y) \wedge_{y} z\right) \wedge_{y} w$ is well-defined and equals $(x \vee y) \wedge_{y} w$.
Proof. It is routine to check that, in $[\hat{0}, z],(x \wedge z) \vee^{z} w$ is the least common upper bound for w and $(x \wedge z) \vee^{z} y$, and that, in $[y, \hat{1}],(x \vee y) \wedge_{y} w$ is the greatest common lower bound lower bound for $(x \vee y) \wedge_{y} z$ and w.
Lemma 2.3. Suppose that $t \leq u$ in $[y, z]$ and $x \in M$. Let $w=(x \vee y) \wedge_{y} z=$ $(x \wedge z) \vee^{z} y$ in $[y, z]$. Then $\left(w \vee^{z} t\right) \wedge_{t} u$ and $\left(w \wedge_{y} u\right) \vee^{u} t$ are well-defined elements of $[t, u]$ and are equal.

Proof. We see that, by Lemma 2.2,

$$
\begin{aligned}
(x \vee t) \wedge_{t} u & =\left((x \vee t) \wedge_{t} z\right) \wedge_{t} u=\left((x \wedge z) \vee^{z} t\right) \wedge_{t} u \\
& =\left(\left((x \wedge z) \vee^{z} y\right) \vee^{z} t\right) \wedge_{t} u=\left(w \vee^{z} t\right) \wedge_{t} u
\end{aligned}
$$

Similarly,

$$
(x \wedge u) \vee^{u} t=\left(w \wedge_{y} u\right) \vee^{u} t
$$

But $(x \vee t) \wedge_{t} u=(x \wedge u) \vee^{u} t$, yielding the result.
Lemma 2.4. Suppose x and w are viable and that x is left modular in P.
(a) If $x \lessdot w$ then for any z in P we have $x \wedge z \lessdot w \wedge z$.
(b) If $w \lessdot x$ then for any y in P we have $w \vee y \lessdot x \vee y$.

Part (b) appears in the lattice case in [7, Lemma 2.5.6] and [8, Lemma 5.3].
Proof. We prove (a); (b) is similar. Assume, seeking a contradiction, that $x \wedge z<$ $u<w \wedge z$ for some $u \in P$. Now $u \leq z$ and $u \leq w$. It follows that $u \not \leq x$.

Now $x<x \vee u \leq w$. Therefore, $w=x \vee u$. So

$$
u=(x \wedge z) \vee^{z} u=(x \vee u) \wedge_{u} z=w \wedge z
$$

which is a contradiction.
We now prove a slight extension of [7, Lemma 2.5.7] and [8, Lemma 5.4].
Lemma 2.5. The elements of $[y, z]$ of the form $\left(x_{i} \vee y\right) \wedge_{y} z$ form a left modular maximal chain in $[y, z]$.
Proof. Lemma 2.3 gives the viability and left modularity properties. By Lemma 2.4(b), $x_{i} \vee y \lessdot x_{i+1} \vee y$. By Lemma 2.3 with $z=\hat{1}$, we have that $x_{i} \vee y$ is left modular in $[y, \hat{1}]$. Therefore, $\left(x_{i} \vee y\right) \wedge_{y} z \lessdot\left(x_{i+1} \vee y\right) \wedge_{y} z$ by Lemma 2.4(a).

We are now ready for the last, and most important, of our preliminary results. Let $[y, z]$ be an interval in P. We call the maximal chain of $[y, z]$ from Lemma 2.5 the induced left modular maximal chain of $[y, z]$. One way to get a second edgelabelling for $[y, z]$ would be to take the labelling induced in $[y, z]$ by this induced maximal chain. We now prove that, for a suitable choice of label set, this labelling coincides with γ.

Proposition 2.6. Let P be a bounded poset, $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ a left modular maximal chain and γ the corresponding edge-labelling with label set $\left\{l_{i}\right\}$. Let $y<z$, and define c_{i} by saying

$$
\begin{aligned}
y= & \left(x_{0} \vee y\right) \wedge_{y} z=\cdots=\left(x_{c_{1}-1} \vee y\right) \wedge_{y} z \\
& \lessdot\left(x_{c_{1}} \vee y\right) \wedge_{y} z=\cdots=\left(x_{c_{2}-1} \vee y\right) \wedge_{y} z \lessdot \cdots \\
& \lessdot\left(x_{c_{r}} \vee y\right) \wedge_{y} z=\cdots=\left(x_{n} \vee y\right) \wedge_{y} z .
\end{aligned}
$$

Let $m_{i}=l_{c_{i}}$. Let δ be the labelling of $[y, z]$ induced by its induced left modular maximal chain and the label set $\left\{m_{i}\right\}$. Then δ agrees with γ restricted to the edges of $[y, z]$.
Proof. Suppose $t \lessdot u$ in $[y, z]$. Using ideas from the proof of Lemma 2.3,

$$
\begin{aligned}
\delta(t, u)=m_{i} \Leftrightarrow & \left(\left(\left(x_{c_{i}-1} \vee y\right) \wedge_{y} z\right) \vee^{z} t\right) \wedge_{t} u=t \text { and } \\
& \left(\left(\left(x_{c_{i}} \vee y\right) \wedge_{y} z\right) \vee^{z} t\right) \wedge_{t} u=u \\
\Leftrightarrow & \left(x_{c_{i}-1} \vee t\right) \wedge_{t} u=t \text { and }\left(x_{c_{i}} \vee t\right) \wedge_{t} u=u \\
\Leftrightarrow & \gamma(t, u)=l_{c_{i}} .
\end{aligned}
$$

Proof of Theorem 2. We now know that the induced left modular chain in $[y, z]$ has (strictly) increasing labels, say $m_{1}<m_{2}<\cdots<m_{r}$. Our first step is to show that it is the only maximal chain with (weakly) increasing labels. Suppose that $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$ is the induced chain and that $y=u_{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{s}=z$ is another chain with increasing labels.

If $s=1$ then $y \lessdot z$ and the result is clear. Suppose $s \geq 2$. By Proposition 2.6, we may assume that the labelling on $[y, z]$ is induced by the induced left modular chain $\left\{w_{i}\right\}$. In particular, we have that $\gamma\left(u_{i}, u_{i+1}\right)=m_{l}$ where $l=$ $\min \left\{j \mid w_{j} \vee^{z} u_{i} \geq u_{i+1}\right\}$. Let k be the least number such that $u_{k} \geq w_{1}$. Then it is clear that $\gamma\left(u_{k-1}, u_{k}\right)=m_{1}$. Note that this is the smallest label that can occur on any edge in $[y, z]$. Since the labels on the chain $\left\{u_{i}\right\}$ are assumed to be increasing, we must have $\gamma\left(u_{0}, u_{1}\right)=m_{1}$. It follows that $w_{1} \vee^{z} u_{0} \geq u_{1}$ and since $y \lessdot w_{1}$, we must have $u_{1}=w_{1}$. Thus, by induction, the two chains coincide. We conclude that the induced left modular maximal chain is the only chain in $[y, z]$ with increasing labels.

It also has the lexicographically least set of labels. To see this, suppose that $y=u_{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{s}=z$ is another chain in $[y, z]$. We assume that $u_{1} \neq w_{1}$ since, otherwise, we can just restrict our attention to $\left[u_{1}, z\right]$. We have $\gamma\left(u_{0}, u_{1}\right)=m_{l}$, where $l=\min \left\{j \mid w_{j} \geq u_{1}\right\} \geq 2$ since $w_{1} \nsupseteq u_{1}$. Hence $\gamma\left(u_{0}, u_{1}\right) \geq m_{2}>\gamma\left(w_{0}, w_{1}\right)$. This gives that γ is an EL-labelling. (That γ is an EL-labelling was already shown in the lattice case in $[7,16]$.)

Finally, we show that it is an interpolating EL-labelling. If $y \lessdot u \lessdot z$ is not the induced left modular maximal chain in $[y, z]$, then let $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$ be the induced left modular maximal chain. We have that $\gamma(y, u)=m_{l}$ where

$$
l=\min \left\{j \mid w_{j} \vee^{z} y \geq u\right\}=\min \left\{j \mid w_{j} \geq u\right\}=r
$$

since $u \lessdot z$. Therefore, $\gamma(y, u)=m_{r}$. Also, $\gamma(u, z)=m_{l}$ where

$$
l=\max \left\{j+1 \mid w_{j} \wedge_{y} z \leq u\right\}=\max \left\{j+1 \mid w_{j} \leq u\right\}=1
$$

since $y \lessdot u$. Therefore, $\gamma(y, u)=m_{1}$, as required.

3. Proof of Theorem 3

We suppose that P is a bounded poset with an interpolating EL-labelling γ. Let $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ be the increasing chain from $\hat{0}$ to $\hat{1}$ and let $l_{i}=\gamma\left(x_{i-1}, x_{i}\right)$. We will begin by establishing some basic facts about interpolating labellings. These results will enable us to show certain meets and joins exist by looking at the labels that appear along particular increasing chains. We will thus show that the x_{i} are viable. We will finish by showing that the x_{i} are left modular, again by looking at the labels on increasing chains.

Let $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$. Suppose that, for some i, we have $\gamma\left(w_{i-1}, w_{i}\right)>$ $\gamma\left(w_{i}, w_{i+1}\right)$. Then the "basic replacement" at i takes the given chain and replaces the subchain $w_{i-1} \lessdot w_{i} \lessdot w_{i+1}$ by the increasing chain from w_{i-1} to w_{i+1}. The basic tool for dealing with interpolating labellings is the following well-known fact about EL-labellings.

Lemma 3.1. Let $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$. Successively perform basic replacements on this chain, and stop when no more basic replacements can be made. This algorithm terminates, and yields the increasing chain from y to z.
Proof. At each step, the sequence of labels on the new chain lexicographically precedes the sequence on the old chain, so the process must terminate, and it is clear that it terminates in an increasing chain.

We now prove some simple consequences of this lemma.
Lemma 3.2. Let m be the chain $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$. Then the labels on m all occur on the increasing chain from y to z and are all different. Furthermore, all the labels on the increasing chain from y to z are bounded between the lowest and highest labels on m.

Proof. That the labels on the given chain all occur on the increasing chain follows immediately from Lemma 3.1 and the fact that after a basic replacement, the labels on the old chain all occur on the new chain. Similar reasoning implies that the labels on the increasing chain are bounded between the lowest and highest labels on m.

That the labels are all different again follows from Lemma 3.1. Suppose otherwise. By repeated basic replacements, one obtains a chain which has two successive equal labels, which is not permitted by the definition of an interpolating labelling.

Lemma 3.3. Let $z \in P$ such that there is some chain from $\hat{0}$ to z all of whose labels are in $\left\{l_{1}, \ldots, l_{i}\right\}$. Then $z \leq x_{i}$. Conversely, if $z \leq x_{i}$, then all the labels on any chain from $\hat{0}$ to z are in $\left\{l_{1}, \ldots, l_{i}\right\}$.

Proof. We begin by proving the first statement. By Lemma 3.2, the labels on the increasing chain from $\hat{0}$ to z are in $\left\{l_{1}, \ldots, l_{i}\right\}$. Find the increasing chain from z to $\hat{1}$. Let w be the element in that chain such that all the labels below it on the chain are in $\left\{l_{1}, \ldots, l_{i}\right\}$, and those above it are in $\left\{l_{i+1}, \ldots, l_{n}\right\}$. Again, by Lemma 3.2, the increasing chain from $\hat{0}$ to w has all its labels in $\left\{l_{1}, \ldots, l_{i}\right\}$, and the increasing chain from w to $\hat{1}$ has all its labels in $\left\{l_{i+1}, \ldots, l_{n}\right\}$. Thus w is on the increasing chain from $\hat{0}$ to $\hat{1}$, and so $w=x_{i}$. But by construction $w \geq z$. So $x_{i} \geq z$.

To prove the converse, observe that by Lemma 3.2, no label can occur more than once on any chain. But since every label in $\left\{l_{i+1}, \ldots, l_{n}\right\}$ occurs on the increasing
chain from x_{i} to $\hat{1}$, no label from among that set can occur on any edge below x_{i}.

The obvious dual of Lemma 3.3 is proved similarly:
Corollary 3.4. Let $z \in P$ such that there is some chain from z to $\hat{1}$ all of whose labels are in $\left\{l_{i+1}, \ldots, l_{n}\right\}$. Then $z \geq x_{i}$. Conversely, if $z \geq x_{i}$, then all the labels on any chain from z to $\hat{1}$ are in $\left\{l_{i+1}, \ldots, l_{n}\right\}$.

We are now ready to prove the necessary viability properties.
Lemma 3.5. $x_{i} \vee z$ and $x_{i} \wedge z$ are well-defined for any $z \in P$ and for $i=1,2, \ldots, n$.
Proof. We will prove that $x_{i} \wedge z$ is well-defined. The proof that $x_{i} \vee z$ is well-defined is similar. Let w be the maximum element on the increasing chain from $\hat{0}$ to z such that all labels on the increasing chain between $\hat{0}$ and w are in $\left\{l_{1}, \ldots, l_{i}\right\}$. Clearly $w \leq z$ and, by Lemma 3.3, $w \leq x_{i}$.

Suppose $y \leq z, x_{i}$. It follows that all labels from $\hat{0}$ to y are in $\left\{l_{1}, \ldots, l_{i}\right\}$. Consider the increasing chain from y to z. There exists an element u on this chain such that all the labels on the increasing chain from $\hat{0}$ to u are in $\left\{l_{1}, \ldots, l_{i}\right\}$ and all the labels on the increasing chain from u to z are in $\left\{l_{i+1}, \ldots, l_{n}\right\}$. Therefore, u is on the increasing chain from $\hat{0}$ to z and, in fact, $u=w$. Also, we have that $\hat{0} \leq y \leq u=w \leq z$. We conclude that w is the greatest common lower bound for z and x_{i}.

Lemma 3.6. $\hat{0}=x_{0} \wedge z \leq x_{1} \wedge z \leq \cdots \leq x_{n} \wedge z=z$, after we delete repeated elements, is the increasing chain in $[\hat{0}, z]$. Hence, $\left(x_{i} \wedge z\right) \vee^{z} y$ is well-defined for $y \leq z$. Similarly, $\left(x_{i} \vee y\right) \wedge_{y} z$ is well-defined.

Proof. From the previous proof, we know that $x_{i} \wedge z$ is the maximum element on the increasing chain from $\hat{0}$ to z such that all labels on the increasing chain between $\hat{0}$ and $x_{i} \wedge z$ are in $\left\{l_{1}, \ldots, l_{i}\right\}$. The first assertion follows easily from this.

Now apply Lemma 3.5 to the bounded poset $[\hat{0}, z]$. It has an obvious interpolating labelling induced from the interpolating labelling of P. Recall that our definition of the existence of $\left(x_{i} \wedge z\right) \vee^{z} y$ only requires it to be well-defined in $[\hat{0}, z]$. The result follows.

We conclude that the increasing maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ of P is viable. It remains to show that it is left modular.

Proof of Theorem 3. Suppose that x_{i} is not left modular for some i. Then there exists some pair $y \leq z$ such that $\left(x_{i} \vee y\right) \wedge_{y} z>\left(x_{i} \wedge z\right) \vee^{z} y$. Set $x=x_{i}$, $b=\left(x_{i} \wedge z\right) \vee^{z} y$ and $c=\left(x_{i} \vee y\right) \wedge_{y} z$. Observe that $d:=x \vee b \geq c$ while $a:=x \wedge c \leq b$. So the picture is as shown in Figure 4.

By Lemma 3.3, the labels on the increasing chain from $\hat{0}$ to a are less than or equal to l_{i}. Consider the increasing chain from a to c. Let w be the first element along the chain. If $\gamma(a, w) \leq l_{i}$, then by Lemma 3.3, w$\leq x_{i}$, contradicting the fact that $a=x \wedge c$. Thus the labels on the increasing chain from a to c are all greater than l_{i}. Dually, the labels on the increasing chain from b to d are less than or equal to l_{i}. But now, by Lemma 3.2, the labels on the increasing chain from b to c must be contained in the labels on the increasing chain from a to c, and also from b to d. But there are no such labels, implying a contradiction. We conclude that the x_{i} are all left modular.

Figure 4
We have shown that if P is a bounded poset with an interpolating labelling γ, then the unique increasing maximal chain M is a left modular maximal chain. By Theorem 2, M then induces an interpolating EL-labelling of P. We now show that this labelling agrees with γ for a suitable choice of label set, which is a special case of the following proposition.

Proposition 3.7. Let γ and δ be two interpolating EL-labellings of a bounded poset P. If γ and δ agree on the γ-increasing chain from $\hat{0}$ to $\hat{1}$, then γ and δ coincide.

Proof. Let $m: \hat{0}=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=\hat{1}$ be the maximal chain with the lexicographically first γ labelling among those chains for which γ and δ disagree. Since m is not the γ-increasing chain from $\hat{0}$ to $\hat{1}$, we can find an i such that $\gamma\left(w_{i-1}, w_{i}\right)>\gamma\left(w_{i}, w_{i+1}\right)$. Let m^{\prime} be the result of the basic replacement at i with respect to the labelling γ. Then the γ-label sequence of m^{\prime} lexicographically precedes that of m, so γ and δ agree on m^{\prime}. But using the fact that γ and δ are interpolating, it follows that they also agree on m. Thus they agree everywhere.

4. Generalizing Supersolvability

Suppose P is a bounded poset. For now, we consider the case of P being graded of rank n. We would like to define what it means for P to be supersolvable, thus generalizing Stanley's definition of lattice supersolvability. A definition of poset supersolvability with a different purpose appears in [16] but we would like a more general definition. In particular, we would like P to be supersolvable if and only if P has an S_{n} EL-labelling. For example, the poset shown in Figure 3, while it doesn't satisfy V. Welker's definition, should satisfy our definition. We need to define, in the poset case, the equivalent of a sublattice generated by two chains.

Suppose P has a viable maximal chain M. Thus $(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$ are well-defined for $x \in M$ and $y \leq z$ in P. Given any chain c of P, we define $R_{M}(c)$ to be the smallest subposet of P satisfying the following two conditions:
(i) M and c are contained in $R_{M}(c)$,
(ii) If $y \leq z$ in P and y and z are in $R_{M}(c)$, then so are $(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$ for any x in M.

Definition 4.1. We say that a bounded poset P is supersolvable with M-chain M if M is a viable maximal chain and $R_{M}(c)$ is a distributive lattice for any chain c of P.

Since distributive lattices are graded, it is clear that a poset must be graded in order to be supersolvable. We now come to the main result of this section.

Theorem 4. Let P be a bounded graded poset of rank n. Then the following are equivalent:
(1) P has an S_{n} EL-labelling,
(2) P is left modular,
(3) P is supersolvable.

Proof. Observe that for a graded poset, Lemma 3.2 implies that an interpolating labelling is an S_{n} EL-labelling, and the converse is obvious. Thus, Theorems 2 and 3 restricted to the graded case give us that $(1) \Leftrightarrow(2)$.

Our next step is to show that (1) and (2) together imply (3). Suppose P is a bounded graded poset of rank n with an S_{n} EL-labelling. Let M denote the increasing maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ of P. We also know that M is viable and left modular and induces the same S_{n} EL-labelling. Given any maximal chain m of P, we define $Q_{M}(m)$ to be the closure of m in P under basic replacements. In other words, $Q_{M}(m)$ is the smallest subposet of P which contains M and m and which has the property that, if y and z are in $Q_{M}(m)$ with $y \leq z$, then the increasing chain between y and z is also in $Q_{M}(m)$. It is shown in [9, Proof of Thm. 1] that $Q_{M}(m)$ is a distributive lattice. There P is a lattice but the proof of distributivity doesn't use this fact. Now consider $R_{M}(c)$. We will show that there exists a maximal chain m of P such that $R_{M}(c)=Q_{M}(m)$. Let m be the maximal chain of P which contains c and which has increasing labels between successive elements of $c \cup\{\hat{0}, \hat{1}\}$. The only idea we need is that, for $y \leq z$ in P, the increasing chain from y to z is given by $y=\left(x_{0} \vee y\right) \wedge_{y} z \leq\left(x_{1} \vee y\right) \wedge_{y} z \leq \cdots \leq$ $\left(x_{n} \vee y\right) \wedge_{y} z=z$, where we delete repeated elements. This follows from Lemma 2.5 since the induced left modular chain in $[y, z]$ has increasing labels. It now follows that $R_{M}(c)=Q_{M}(m)$, and hence $R_{M}(c)$ is a distributive lattice.

Finally, we will show that $(3) \Rightarrow(2)$. We suppose that P is a bounded supersolvable poset with M-chain M. Suppose $y \leq z$ in P and let c be the chain $y \leq z$. For any x in $M, x \vee y$ is well-defined in P (because M is assumed to be viable) and equals the usual join of x and y in the lattice $R_{M}(c)$. The same idea applies to $x \wedge z,(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$. Since $R_{M}(c)$ is distributive, we have that

$$
(x \vee y) \wedge_{y} z=(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)=(x \wedge z) \vee y=(x \wedge z) \vee^{z} y
$$

in $R_{M}(c)$ and so M is left modular in P.
Remark 4.2. We know from Theorem 1 that a graded lattice of rank n is supersolvable if and only if it has an S_{n} EL-labelling. Therefore, it follows from Theorem 4 that the definition of a supersolvable poset when restricted to graded lattices yields the usual definition of a supersolvable lattice. (Note that this is not a priori obvious from our definition of a supersolvable poset.)

Remark 4.3. The argument above for the equality of $R_{M}(c)$ and $Q_{M}(m)$ holds even if P is not graded. However, in the ungraded case, it is certainly not true that $Q_{M}(m)$ is distributive. The search for a full generalization of Theorem 1 thus leads us to ask what can be said about $Q_{M}(m)$ in the ungraded case. Is it a lattice? Can we say anything even in the case that P is a lattice?

5. Non-Straddling partitions

Let Π_{n} denote the lattice of partitions of the set $[n]$ into blocks, where we order partitions by refinement: if y and z are partitions of $[n]$ we say that $y \leq z$ if every
block of y is contained in some block of z. Equivalently, z covers y in Π_{n} if z is obtained from y by merging two blocks of y. Therefore, Π_{n} is graded of rank $n-1 . \Pi_{n}$ is shown to be supersolvable in [13] and hence has an S_{n-1} EL-labelling, which we denote be δ. In fact, it will simplify our discussion if we use the label set $\{2, \ldots, n\}$ for δ, rather than the label set $[n-1]$. We choose the M-chain, and hence the increasing maximal chain for δ, to be the maximal chain consisting of the bottom element and those partitions of $[n]$ whose only non-singleton block is $[i]$, where $2 \leq i \leq n$. In the literature, δ is often defined in the following form, which can be shown to be equivalent. If z is obtained from y by merging the blocks B and B^{\prime}, then we set

$$
\delta(y, z)=\max \left\{\min B, \min B^{\prime}\right\}
$$

For any $x \in \Pi_{n}$, we will say that $j \in\{2, \ldots n\}$ is a block minimum in x if $j=\min B$ for some block B of x. In particular, we see that $\delta(y, z)$ is the unique block minimum in y that is not a block minimum in z.

Recall that a non-crossing partition of $[n]$ is a partition with the property that if some block B contains a and c and some block B^{\prime} contains b and d with $a<b<$ $c<d$, then $B=B^{\prime}$. Again, we can order the set of non-crossing partitions of $[n]$ by refinement and we denote the resulting poset by $N C_{n}$. This poset, which can be shown to be a lattice, has many nice properties and has been studied extensively. More information can be found in R. Simion's survey article [11] and the references given there. Since $N C_{n}$ is a subposet of Π_{n}, we can consider δ restricted to the edges of $N C_{n}$. It was observed by $\mathrm{Björner}$ and P . Edelman in [3] that this gives an EL-labelling for $N C_{n}$ and we can easily see that this EL-labelling is, in fact, an S_{n-1} EL-labelling (once we subtract 1 from every label).

We are now ready to state our main definition for this section, which should be compared with the definition above of non-crossing partitions.
Definition 5.1. A partition of $[n]$ is said to be non-straddling if whenever some block B contains a and d and some block B^{\prime} contains b and c with $a<b<c<d$, then $B=B^{\prime}$.

This definition is also very similar to that of non-nesting partitions, as defined by A. Postnikov and discussed in [10, Remark 2] and [1]. The only difference in the definition of non-nesting partitions is that we do not require $B=B^{\prime}$ if there is also an element of B between b and c. So, for example, $\{1,3,5\}\{2,4\}$ is a non-nesting partition in Π_{5} but is not a non-straddling partition. We say that $\{1,3,5\}\{2,4\}$ is a straddling partition, that $1<2<4<5$ is a straddle, and that the blocks $\{1,3,5\}$ and $\{2,4\}$ form a straddle.

Let $N S_{n}$ be the subposet of Π_{n} consisting of those partitions that are nonstraddling. To distinguish the interval $[x, y]$ in Π_{n} from the interval $[x, y]$ in $N S_{n}$, we will use the notation $[x, y]_{\Pi_{n}}$ and $[x, y]_{N S_{n}}$, respectively. We note that the meet in Π_{n} of two non-straddling partitions is again non-straddling, implying that $N S_{n}$ is a meet-semilattice. Since $\{1,2 \ldots, n\}$ is a top element for $N S_{n}$, we conclude that $N S_{n}$ is a lattice. On the other hand, $N S_{n}$ is not graded. For example, consider those elements of Π_{6} that cover $\{1,4\}\{2,5\}\{3,6\}$, as represented in Figure $5(\mathrm{a})$. $\{1,2,4,5\}\{3,6\},\{1,3,4,6\}\{2,5\}$ and $\{1,4\}\{2,3,5,6\}$ are all stradding partitions, so $\{1,4\}\{2,5\}\{3,6\}$ is covered in $N S_{6}$ by $\{1,2,3,4,5,6\}$. Figure 5 (b) shows $[\{1,4\}\{2,5\}\{3\}\{6\}, \hat{1}]_{N S_{6}}$.

Therefore, unlike Π_{n} and $N C_{n}, N S_{n}$ cannot have an S_{n-1} EL-labelling. However, we can ask if it has an interpolating EL-labelling. We see that the following

Figure 5
three ways of defining an edge-labelling γ for $N S_{n}$ are equivalent. Observe that if $y \lessdot z$ in $N S_{n}$, then z is obtained from y by merging the blocks $B_{1}, B_{2}, \ldots, B_{r}$ of y into a single block B in z. We set

$$
\begin{align*}
\gamma(y, z)= & \text { second smallest element of }\left\{\min B_{1}, \ldots, \min B_{r}\right\} \\
= & \text { smallest block minimum in } y \text { that is not a block } \\
& \text { minimum in } z \\
= & \text { smallest edge label of }[y, z]_{\Pi_{n}} \text { under the edge-labelling } \delta . \tag{2}
\end{align*}
$$

See Figure 5(b) for examples. Note that the label set for γ is $\{2,3, \ldots, n\}$ and that if $r=2$, then $\gamma(y, z)$ equals $\delta(y, z)$. We see that the chain

$$
\hat{0}<\{1,2\}\{3\} \cdots\{n\}<\{1,2,3\}\{4\} \cdots\{n\}<\cdots<\{1,2, \ldots, n-1\}\{n\}<\hat{1}
$$

is an increasing maximal chain in $N S_{n}$ under γ.
Theorem 5. The edge-labelling γ is an interpolating EL-labelling for $N S_{n}$.
Applying Theorem 3, we get the following result:
Corollary 5.2. $N S_{n}$ is left modular.
In preparation for proving Theorem 5 , we wish to get a firmer grasp on $N S_{n}$. Suppose $x, y \in N S_{n}$. While the meet of x and y in $N S_{n}$ is just the meet of x and y in Π_{n}, the situation for joins is more complicated. The next lemma, crucial to the proof that γ is an EL-labelling, helps us to understand important types of joins. From now on, unless otherwise specified, $x \vee y$ with $x, y \in N S_{n}$ will denote the join of x and y in $N S_{n}$. Furthermore, if $l_{0}<l_{1}<\cdots<l_{r}$ are block minima in y, then $\left\langle l_{i}\right\rangle$ will denote the block of y with minimum element l_{i}, and $\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle$ will denote the minimum element $z \in N S_{n}$ for which the elements of $\left\langle l_{0}\right\rangle,\left\langle l_{1}\right\rangle, \cdots,\left\langle l_{r}\right\rangle$ are all in a single block. Note that z is well-defined, since it is the meet of all those elements of $N S_{n}$ that have the required elements in a single block.

Lemma 5.3. Suppose $l_{0}<l_{1}<\cdots<l_{r}$ are block minima in y and that

$$
y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right)
$$

Then

$$
y \vee\left(\left\langle l_{i}\right\rangle \cup\left\langle l_{j}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right)
$$

for any $0 \leq i<j \leq r$.

In words, this says that if merging the blocks $\left\langle l_{0}\right\rangle$ and $\left\langle l_{1}\right\rangle$ in y requires us to merge all of $\left\langle l_{0}\right\rangle,\left\langle l_{1}\right\rangle, \ldots,\left\langle l_{r}\right\rangle$, then merging any two of these blocks also requires us to merge all of them.

Proof. The proof is by induction on r, with the result being trivially true when $r=1$. While elementary, the details are a little intricate. To gain a better understanding, the reader may wish to treat the proof as an exercise. If $i<j<r-1$, then by the induction assumption and the hypothesis that $y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)=$ $y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right.$, we have

$$
y \vee\left(\left\langle l_{i}\right\rangle \cup\left\langle l_{j}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r-1}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right),
$$

as required. Therefore, it suffices to let $j=r$.
Since $y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r-1}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right)$, we know that $\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r-1}\right\rangle$ forms a straddle with $\left\langle l_{r}\right\rangle$. There are two ways in which this might happen.

Suppose we have $a<b<c<d$ with $a, d \in\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r-1}\right\rangle$ and $b, c \in\left\langle l_{r}\right\rangle$. Suppose $d \in\left\langle l_{s}\right\rangle$ in y. Then, since $l_{s}<l_{r} \leq b<c$, we have that $l_{s}<b<c<d$ is a straddle in y, which contradicts $y \in N S_{n}$.

Secondly, suppose we have $a<b<c<d$ with $a, d \in\left\langle l_{r}\right\rangle$ and $b, c \in\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup$ $\cdots \cup\left\langle l_{r-1}\right\rangle$. Suppose $b \in\left\langle l_{s}\right\rangle$ and $c \in\left\langle l_{t}\right\rangle$. Now $c>b>a \geq l_{r}>l_{s}, l_{t}$. If $s=t$ then y has a straddle, so we can assume that $l_{s} \neq l_{t}$ and that $l_{i} \neq l_{t}$, with the argument being similar if $l_{i} \neq l_{s}$. If $l_{i}<l_{t}$, then $l_{i}<l_{t}<c<d$ is a straddle when we merge blocks $\left\langle l_{i}\right\rangle$ and $\left\langle l_{r}\right\rangle$ in y. Therefore,

$$
\begin{equation*}
y \vee\left(\left\langle l_{i}\right\rangle \cup\left\langle l_{r}\right\rangle\right)=y \vee\left(\left\langle l_{i}\right\rangle \cup\left\langle l_{t}\right\rangle \cup\left\langle l_{r}\right\rangle\right)=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle \cup \cdots \cup\left\langle l_{r}\right\rangle\right) \tag{3}
\end{equation*}
$$

by the induction assumption. If $l_{i}>l_{t}$, then $l_{t}<l_{i}<l_{r}<c$ is a straddle when we merge blocks $\left\langle l_{i}\right\rangle$ and $\left\langle l_{r}\right\rangle$ in y, also implying (3).

Lemma 5.4. Suppose $y<z$ in $N S_{n}$ and that $[y, z]_{\Pi_{n}}$ has edge labels $l_{1}<l_{2}<$ $\cdots<l_{s}$ under the edge-labelling δ.
(i) There is exactly one edge of the form $y \lessdot w$ with $\gamma(y, w)=l_{1}$ in $[y, z]_{N S_{n}}$.
(ii) On any unrefinable chain $y \lessdot u_{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{k}=z$ in $N S_{n}$, the label l_{1} has to appear.

Proof. (i) We first prove the existence of w. Let l_{0} be the minimum of the block of z containing l_{1} and set $w=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)$. Suppose $y<u \leq w$. We know w is obtained from y by merging the blocks $\left\langle l_{0}\right\rangle,\left\langle l_{1}\right\rangle,\left\langle l_{i_{1}}\right\rangle,\left\langle l_{i_{2}}\right\rangle,\left\langle l_{i_{r}}\right\rangle$, for some $0 \leq r<s$. Applying Lemma 5.3, we get that $u=w$ and so $y \lessdot w$. By definition of γ, we have that $\gamma(y, w)=l_{1}$.

It remains to prove uniqueness. Suppose $w^{\prime} \in N S_{n}$ with $y \lessdot w^{\prime}$ in $[y, z]$. If $\gamma\left(y, w^{\prime}\right)=l_{1}$, then we see that the blocks $\left\langle l_{0}\right\rangle$ and $\left\langle l_{1}\right\rangle$ must be merged in w^{\prime}. Therefore, these two blocks are merged in $w \wedge w^{\prime}$, which is thus greater than y. Since $y \lessdot w, w^{\prime}$, we conclude that $w=w^{\prime}$.
(ii) Consider the chain $y=u_{0}<u_{1}<\cdots<u_{k}=z$ as a chain in Π_{n}. Since δ is an S_{n-1} EL-labelling for Π_{n} (once we subtract 1 from every label), the label l_{1} has to appear on every maximal chain of $[y, z]_{\Pi_{n}}$. It particular, it has to appear in one of the intervals $\left[u_{i}, u_{i+1}\right]_{\Pi_{n}}$ for $0 \leq i<k$. Therefore, by (2), we get that $\gamma\left(u_{i}, u_{i+1}\right)=l_{1}$ for some $0 \leq i<k$.

Proposition 5.5. The edge-labelling γ is an EL-labelling for $N S_{n}$.

Proof. Consider $y, z \in N S_{n}$ with $y<z$. Suppose $[y, z]_{\Pi_{n}}$ has edge labels $l_{1}<l_{2}<$ $\cdots<l_{s}$. By (2), these are the only edge labels that can appear in $[y, z]_{N S_{n}}$. We now describe a recursive construction of an unrefinable chain $\lambda: y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{k}=$ z in $N S_{n}$. We let w_{1} be the w of Lemma 5.4, i.e. w_{1} is that unique element of the interval $[y, z]$ in $N S_{n}$ that covers y and satisfies $\gamma\left(y, w_{1}\right)=l_{1}$. Obviously, the labels in the interval $\left[w_{1}, z\right]$ are all greater than l_{1}. Now we apply the same argument in the interval $\left[w_{1}, z\right]$ to define w_{2} and repeat until we have constructed all of λ. Clearly, λ is then an increasing chain. By Lemma 5.4(i), it has the lexicographically least set of labels. By Lemma 5.4(ii), it is the only increasing chain from y to z.

Proof of Theorem 5. Suppose we have $y \lessdot u \lessdot z$ in $N S_{n}$ with $\gamma(y, u)>\gamma(u, z)$. Let $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{k}=z$ be the unique increasing chain of $[y, z]$ in $N S_{n}$. By Lemma 5.4, we know that $\gamma\left(w_{0}, w_{1}\right)=\gamma(u, z)=l_{1}$, the smallest edge label of $[y, z]_{\Pi_{n}}$.

To show that $\gamma(y, u)=\gamma\left(w_{k-1}, w_{k}\right)$, we have to work considerably harder. We will continue to write $\langle m\rangle$ to denote the block of y whose minimum is m and we suppose that u is obtained from y by merging blocks $\left\langle m_{0}\right\rangle,\left\langle m_{1}\right\rangle, \ldots,\left\langle m_{s}\right\rangle$ of y, with $m_{0}<m_{1}<\cdots<m_{s}$. We will write $\langle l\rangle_{u}$ to denote the block of u whose minimum is l, and we suppose that z is obtained from u by merging blocks $\left\langle l_{0}\right\rangle_{u},\left\langle l_{1}\right\rangle_{u}, \ldots,\left\langle l_{r}\right\rangle_{u}$, with $l_{0}<l_{1}<\cdots<l_{r}$. With the structure of the chain $y \lessdot u \lessdot z$ thus fixed, we now can deduce information about the structure of the increasing chain.

If l_{0} and m_{0} are distinct and are both block minima in z, then all the l_{i} 's and m_{j} 's are distinct. It follows that z is obtained from y by merging blocks $\left\langle l_{0}\right\rangle,\left\langle l_{1}\right\rangle, \ldots,\left\langle l_{r}\right\rangle$ and separately merging blocks $\left\langle m_{0}\right\rangle,\left\langle m_{1}\right\rangle, \ldots,\left\langle m_{s}\right\rangle$. Since $y \lessdot u \lessdot z$, we get that $k=2$ and $\gamma(y, u)=\gamma\left(w_{1}, z\right)=m_{1}$. We assume, therefore, that $m_{0}=l_{i}$ for some $0 \leq i \leq r$.

As usual, we let $w_{1}=y \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)$. Now consider

$$
w=y \vee\left(\bigcup_{i: l_{i}<m_{1}}\left\langle l_{i}\right\rangle\right)
$$

Since $l_{1}<m_{1}$, we know that $w \geq w_{1}$. Let B denote the the block of w containing all $\left\langle l_{i}\right\rangle$ satisfying $l_{i}<m_{1}$. Since $m_{0}<m_{1}$, we know that $m_{0} \in B$. In fact, if we can show that $m_{1} \notin B$, then we can now complete the proof. Indeed, assume $m_{1} \notin B$ and let $w^{\prime}=w \vee\left(B \cup\left\langle m_{1}\right\rangle\right)$. Now w^{\prime} has m_{0} and m_{1} in the same block and so satisfies $w^{\prime} \geq u$, since $u=y \vee\left(\left\langle m_{0}\right\rangle \cup\left\langle m_{1}\right\rangle\right)$. Also, w^{\prime} has l_{0} and l_{1} in the same block and so satisfies $w^{\prime} \geq z$, since $z=u \vee\left(\left\langle l_{0}\right\rangle \cup\left\langle l_{1}\right\rangle\right)$. Hence, $w^{\prime}=z$. By Lemma 5.3 (substitute w for y, and $m_{1}<\cdots<m_{s}$ for $l_{1}<\cdots<l_{r}$), we see that $w \lessdot w^{\prime}$. Now $\gamma\left(w, w^{\prime}\right)=m_{1}$, while the edge labels of $[y, w]_{\Pi_{n}}$ all come from the set $\left\{l_{i} \mid l_{i}<m_{1}\right\}$, implying that w is on the increasing chain between y and z. Therefore, $w=w_{k-1}$ and so $\gamma\left(w_{k-1}, w_{k}\right)=\gamma(y, u)$.

It remains to show that $m_{1} \notin B$. In fact, we will show that $m_{j} \notin B$ for any $j \geq 1$. Consider the set:

$$
\tilde{B}=\bigcup_{i: l_{i}<m_{1}}\left\langle l_{i}\right\rangle
$$

We will show that \tilde{B} does not form a straddle with any $\left\langle m_{j}\right\rangle$ for $j \geq 1$. From that, it follows immediately that $B=\tilde{B}$, and therefore that $m_{1} \notin B$, as desired.

For $j \geq 1$, if $\left\langle m_{j}\right\rangle$ is a singleton, then \tilde{B} does not form a straddle with $\left\langle m_{j}\right\rangle$. So suppose that $\left|\left\langle m_{j}\right\rangle\right| \geq 2$. Let m_{j}^{\prime} denote the second smallest element of $\left\langle m_{j}\right\rangle$. Observe the following:

- If $\left\langle m_{0}\right\rangle$ contains an element greater than m_{j}^{\prime}, then $\left\langle m_{0}\right\rangle$ and $\left\langle m_{j}\right\rangle$ form a straddle in y, which is impossible.
- If $\left\langle m_{0}\right\rangle$ has more than one element between m_{j} and m_{j}^{\prime}, then we can draw the same conclusion.
- Consider those $l_{i}<m_{1}$ with $l_{i} \neq m_{0}$. If $\left\langle l_{i}\right\rangle$ contains an element greater than m_{j}, then $\left\langle l_{i}\right\rangle_{u}$ forms a straddle in u with $\left\langle m_{0}\right\rangle \cup\left\langle m_{1}\right\rangle \cup \cdots \cup\left\langle m_{s}\right\rangle$, which is impossible.
Combining these three observations, we see that \tilde{B} contains no elements greater than m_{j}^{\prime}, and at most one element between m_{j} and m_{j}^{\prime}. In particular, it does not form a straddle with $\left\langle m_{j}\right\rangle$, as desired.

Acknowledgements

The authors would like to thank Andreas Blass, Bruce Sagan, Richard Stanley, Volkmar Welker, and the anonymous referees for helpful comments.

References

[1] C. Athanasiadis, On noncrossing and nonnesting partitions for classical reflection groups, Elec. J. Combin 5 (1998), R42, 16pp..
[2] G. Birkhoff, Lattice Theory (3rd. Ed.), Amer. Math. Soc., Providence, RI, U.S.A., 1967.
[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159-183.
[4] A. Björner and M. Wachs, Shellable non-pure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), 1299-1327.
[5] A. Björner and M. Wachs, Shellable non-pure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
[6] A. Blass and B. Sagan, Möbius functions of lattices, Adv. Math. 127 (1997), 94-123.
[7] L. S.-C. Liu, Left-modular elements and edge labellings, Ph.D. thesis, Michigan State University, 1999.
[8] S.-C. Liu and B. Sagan, Left-modular elements of lattices, J. Combin. Theory Ser. A 91 (2000), 369-385, doi:10.1006/jcta.2000.3102.
[9] P. McNamara, EL-labelings, supersolvability and 0-Hecke algebra actions on posets, J. Combin. Theory Ser. A 101 (2003), 69-89, doi:10.1016/S0097-3165(02)00019-5.
[10] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (19970, 195-222, doi:10.1016/S0012-365X(96)00365-2.
[11] R. Simion, Noncrossing partitions, Discrete Math. 217 (2000), 367-409, Formal Power Series and Algebraic Combinatorics (Vienna, 1997), doi:10.1016/S0012-365X(99)00273-3.
[12] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119, Amer. Math. Soc., Providence, RI, U.S.A., 1972.
[13] R. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
[14] R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth \& Brooks/Cole, Monterey, CA, U.S.A., 1986; second printing, Cambridge University Press, Cambridge, U.K., 1997.
[15] H. Thomas, Graded left modular lattices are supersolvable, preprint, available at http://arxiv.org/math.CO/0404544, 2004.
[16] V. Welker, Shellability in the lattice of subgroups of a finite group, in Jerusalem Combinatorics '93, Contemp. Math. 178, Amer. Math. Soc., Providence, RI, U.S.A., 1994, pp. 335-360.

Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec À Montreal, Case Postale 8888, succursale Centre-ville, Montréal (Québec) H3C 3P8, Canada

E-mail address: mcnamara@lacim.uqam.ca
Fields Institute, 222 College St., Toronto, ON, M5T 3J1, Canada
E-mail address: hugh@math.unb.ca

