#### P-partitions and Quasi-Symmetric Functions

York University Applied Algebra Seminar 3 February 2004

Peter McNamara LaCIM, UQÀM

Slides available from www.lacim.uqam.ca/~mcnamara

#### **Outline**

- Introduction and Stanley's Conjecture
- Malvenuto's reformulation
- Cylindric skew shapes
- Conjecture true in "most" cases
- Open problems

## **P-partitions**

P: partially ordered set (poset)  $\omega: P \to \{1, 2, \dots, |P|\}$  bijective labelling



**DEFINITION** (R. Stanley) Given a labelled poset  $(P, \omega)$ , a  $(P, \omega)$ -partition is a map  $f: P \to \mathbb{P}$  with the following properties:

- f is order-preserving: If  $x \le y$  in P then  $f(x) \le f(y)$
- If  $x \lessdot y$  in P and  $\omega(x) > \omega(y)$  then  $f(x) \lessdot f(y)$

## **P-partitions**

P: partially ordered set (poset)  $\omega: P \rightarrow \{1, 2, \dots, |P|\}$ 

 $\omega: P \rightarrow \{1, 2, \dots, |P|\}$  bijective labelling



**DEFINITION** (R. Stanley) Given a labelled poset  $(P, \omega)$ , a  $(P, \omega)$ -partition is a map  $f: P \to \mathbb{P}$  with the following properties:

- f is order-preserving: If  $x \le y$  in P then  $f(x) \le f(y)$
- If  $x \lessdot y$  in P and  $\omega(x) > \omega(y)$  then  $f(x) \lessdot f(y)$



- $(P, \omega)$  is an antichain:  $(P, \omega)$ -partition = composition
- $(P, \omega)$  is a chain of weak edges:  $(P, \omega)$ -partition = partition
- $(P, \omega)$  is a chain of strict edges:  $(P, \omega)$ -partition = partition with distinct parts



- $(P, \omega)$  is an antichain:  $(P, \omega)$ -partition = composition
- $(P, \omega)$  is a chain of weak edges:  $(P, \omega)$ -partition = partition
- $(P, \omega)$  is a chain of strict edges:  $(P, \omega)$ -partition = partition with distinct parts





- $(P, \omega)$  is an antichain:  $(P, \omega)$ -partition = composition
- $(P, \omega)$  is a chain of weak edges:  $(P, \omega)$ -partition = partition
- $(P, \omega)$  is a chain of strict edges:  $(P, \omega)$ -partition = partition with distinct parts





- $(P, \omega)$  is an antichain:  $(P, \omega)$ -partition = composition
- $(P, \omega)$  is a chain of weak edges:  $(P, \omega)$ -partition = partition
- $(P, \omega)$  is a chain of strict edges:  $(P, \omega)$ -partition = partition with distinct parts

#### ... and Quasi-Symmetric Functions

#### **NOTE** $K_{P,\omega}(x)$ is a quasi-symmetric function:

Coeff. of  $x_{i_1}^{m_1} x_{i_2}^{m_2} \cdots x_{i_k}^{m_k} = \text{Coeff. of } x_{j_1}^{m_1} x_{j_2}^{m_2} \cdots x_{j_k}^{m_k}$  whenever  $i_1 < i_2 < \cdots < i_k$  and  $j_1 < j_2 < \cdots < j_k$ .

$$M_{(\alpha_1, \dots, \alpha_k)} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$$

#### EXAMPLE



$$f(a) = f(b) < f(c) < f(d)$$
  $M_{211}$   
 $f(a) < f(b) = f(c) < f(d)$   $M_{121}$   
 $f(a) < f(b) < f(c) < f(d)$   $M_{1111}$   
 $f(a) < f(c) < f(b) < f(d)$   $M_{1111}$ 

## Schur labelled skew shape posets

#### **EXAMPLE**





Bijection: SSYT of shape  $\lambda/\mu \leftrightarrow (P,\omega)$ -partitions Furthermore,

$$K_{P,\omega}(x) = s_{\lambda/\mu}.$$

BIG QUESTION What other labelled posets  $(P, \omega)$  have symmetric  $K_{P,\omega}(x)$ ?

## Stanley's P-partitions Conjecture

Conjecture (Stanley, c.1971)  $K_{P,\omega}(x)$  is symmetric if and only if  $(P,\omega)$  is isomorphic to a Schur labelled skew shape poset.

- True if all edges are weak: [3] exercise in EC1.
- Stembridge 1993/4: true if  $|P| \le 7$ .

**SPECIAL CASE** Polyominoes

## Stanley's P-partitions Conjecture

Conjecture (Stanley, c.1971)  $K_{P,\omega}(x)$  is symmetric if and only if  $(P,\omega)$  is isomorphic to a Schur labelled skew shape poset.

- True if all edges are weak: [3] exercise in EC1.
- Stembridge 1993/4: true if  $|P| \le 7$ .

#### SPECIAL CASE Polyominoes



# Local Structure of Skew Shape posets



| $(P,\omega)$ | $K_{P,\omega}(x)$                                         |
|--------------|-----------------------------------------------------------|
| $B_1$        | $M_3 + M_{21} + 2M_{12} + 2M_{111}$                       |
| $B_2$        | $M_{21} + 2M_{111}$ $M_3 + 2M_{21} + M_{12} + 2M_{111}$   |
| $B_3$        | $M_3 + 2M_{21} + M_{12} + 2M_{111}$                       |
| $B_4$        | $M_{12} + 2M_{111}$                                       |
| $B_5$        | $M_{12} + M_{111}$                                        |
| $B_6$        | $M_{12} + 2M_{111}$ $M_{12} + M_{111}$ $M_{21} + M_{111}$ |

NOTE All 3 element convex subposets of a (Schur labelled) skew shape poset must be of one of the green forms, i.e. a skew shape poset cannot have any forbidden convex subposets.

#### Malvenuto's reformulation

THEOREM (C. Malvenuto, c. 1995) If a labelled poset  $(P,\omega)$  has no forbidden convex subposets, then  $(P,\omega)$  is isomorphic to a skew shape poset.

In other words, being a skew shape poset is equivalent to having no forbidden convex subposets.

Conjecture (Stanley's conjecture restated) If  $K_{P,\omega}$  is symmetric, then  $(P,\omega)$  has no forbidden convex subposets.

#### **E**XAMPLE



$$|\omega(a)>\omega(c)>\omega(b)>\omega(d)>\omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

#### **E**XAMPLE



$$|\omega(a)>\omega(c)>\omega(b)>\omega(d)>\omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

Symmetric. So does it obey Stanley's conjecture?

a

#### **EXAMPLE**



$$|\omega(a)>\omega(c)>\omega(b)>\omega(d)>\omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

Symmetric. So does it obey Stanley's conjecture?

a d

#### **E**XAMPLE



$$\omega(a) > \omega(c) > \omega(b) > \omega(d) > \omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

$$\begin{bmatrix} a & d \\ b \end{bmatrix}$$

#### **E**XAMPLE



$$\omega(a) > \omega(c) > \omega(b) > \omega(d) > \omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

#### **EXAMPLE**



$$\omega(a) > \omega(c) > \omega(b) > \omega(d) > \omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$

#### **EXAMPLE**



$$\omega(a) > \omega(c) > \omega(b) > \omega(d) > \omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$



#### **E**XAMPLE



$$\omega(a) > \omega(c) > \omega(b) > \omega(d) > \omega(a)$$
 Yikes! Oriented Poset

$$K_{P,O}(x) = M_{22} + 2M_{211} + 2M_{121} + 2M_{112} + 4M_{1111} \Rightarrow$$



#### Cylindric skew shapes: definition

Follow Postnikov.

Cylindric partitions: Gessel and Krattenthaler

Proper tableaux: Bertram, Ciocan-Fontanine, Fulton

Fix  $u, v \geq 2$ .

$$\mathfrak{C}_{uv} = \mathbb{Z}^2/(-u, v)\mathbb{Z}.$$

Let  $\langle i,j \rangle = (i,j) + (-u,v)\mathbb{Z}$ .

We get a partial order on  $\mathfrak{C}_{uv}$  from the covering relations:

weak:  $\langle i, j \rangle \lessdot \langle i+1, j \rangle$  and strict:  $\langle i, j \rangle \lessdot \langle i, j+1 \rangle$ .

DEFINITION A cylindric skew shape is a finite convex subposet of the poset  $\mathfrak{C}_{uv}$ .

# Cylindric skew shapes: examples



## Cylindric skew shapes: results

THEOREM Suppose (P,O) is a cylindric skew shape poset (i.e. derived from a cylindric skew shape). Then  $K_{(P,O)}(x)$  is symmetric.

## Cylindric skew shapes: results

THEOREM Suppose (P,O) is a cylindric skew shape poset (i.e. derived from a cylindric skew shape). Then  $K_{(P,O)}(x)$  is symmetric.

CONJECTURE Let (P,O) be any oriented poset. Then  $K_{P,O}(x)$  is symmetric if and only if every connected component of (P,O) is isomorphic to a cylindric skew shape poset.

## Cylindric skew shapes: results

THEOREM Suppose (P,O) is a cylindric skew shape poset (i.e. derived from a cylindric skew shape). Then  $K_{(P,O)}(x)$  is symmetric.

CONJECTURE Let (P,O) be any oriented poset. Then  $K_{P,O}(x)$  is symmetric if and only if every connected component of (P,O) is isomorphic to a cylindric skew shape poset.

THEOREM Let (P,O) be an oriented poset. Every connected component of (P,O) is isomorphic to a cylindric skew shape poset if and only if (P,O) has no forbidden convex subposets.

## Open Problems

- Stanley's Conjecture, and its extension.
- Show  $K_{P,\omega}(x)$  symmetric  $\Rightarrow K_{P,\omega}(x)$  Schur-positive
- ? Is the map  $(P, \omega) \to K_{P,\omega}(x)$  injective (modulo rotation of skew shapes) ?
- What about  $(P, O) \rightarrow K_{P,O}(x)$  ?
- Given a quasi-symmetric function K(x), how do you tell if  $K = K_{P,\omega}(x)$  for some  $(P,\omega)$  ?

# Fast construction of $K_{P,\omega}(x)$

Define a new basis  $F_{\alpha}$  by:

$$F_{\alpha} = \sum_{\beta} M_{\beta}$$

where the sum is over all compositions  $\beta$  than are *finer* than  $\alpha$ . E.g.,  $F_{13}=M_{13}+M_{112}+M_{121}+M_{1111}$ .

Then

$$K_{P,\omega}(x) = \sum_{\pi \in \mathcal{L}(P,\omega)} F_{\text{comp}(\pi)}(x).$$

**EXAMPLE** 



# Fast construction of $K_{P,\omega}(x)$

Define a new basis  $F_{\alpha}$  by:

$$F_{\alpha} = \sum_{\beta} M_{\beta}$$

where the sum is over all compositions  $\beta$  than are *finer* than  $\alpha$ . E.g.,  $F_{13}=M_{13}+M_{112}+M_{121}+M_{1111}$ .

Then

$$K_{P,\omega}(x) = \sum_{\pi \in \mathcal{L}(P,\omega)} F_{\text{comp}(\pi)}(x).$$

#### **EXAMPLE**



$$K_{P,\omega}(x) = F_{211} + F_{121} = M_{211} + M_{121} + 2M_{1111}.$$

#### More open problems

- Given a quasi-symmetric function K(x), how do you tell if  $K = K_{P,O}(x)$  for some (P,O) ?
- When is  $K_{P,O}(x)$  F-positive?

CONJECTURE  $K_{P,O}(x)$  is F-positive if and only if  $(P,O)=(P,\omega)$  for some  $\omega$ .

PROPOSITION  $K_{P,O}(x)$  is not F-positive if (P,O) consists of exactly one cycle.

• When (P,O) is a cylindric skew shape, show that  $K_{P,O}(x)$  is Schur-positive if and only if (P,O) is a skew shape.