An Introduction to Partially Ordered Sets

Peter McNamara

SPAMS 18th October 2001

Slides available from

 $\verb|http://www-math.mit.edu/\sim|mcnamara/|$

Definition A partially ordered set or poset P is a set S, together with a relation \leq , with the following properties:

- 1. Reflexivity: $x \leq x$ for all $x \in P$
- 2. Antisymmetry: If $x \leq y$ and $y \leq x$ then x = y
- 3. Transitivity: If $x \leq y$ and $y \leq z$ then $x \leq z$

Example The set of subsets of $\{1, 2, 3\}$ ordered by containment. Then, for example, $\emptyset \leq \{1, 3\} \leq \{1, 2, 3\}$.

Example The set of divisors of 60 where \leq corresponds to "divides". Then, for example, $6 \leq 30$ but $6 \nleq 15$.

If x < y in P, then we say that y covers x if there's no z with x < z < y.

Then we can draw the *Hasse diagram* of P where we draw an edge from x up to y if and only if y covers x.

Definition A poset P is said to be a *lattice* if every two elements x and y of P have a least upper bound and a greatest lower bound.

We call the least upper bound the *join* of x and y and denote it by $x \vee y$.

We call the greatest lower bound the meet of x and y and denote it by $x \wedge y$.

We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

for all elements x, y and z of L.

Consider Example The lattice of order ideals of a poset P.

The Fundamental Theorem of Finite Distributive Lattices, due to Birkhoff:

THEOREM A lattice L is distributive if and only if it is the lattice of order ideals of some poset P.

We write L = J(P).

An edge-labeling of a poset P is said to be an EL-labeling if it satisfies the following 2 conditions:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. This chain has the lexicographically least set of labels

Who cares?

- EL-labeling \Rightarrow Shellable \Rightarrow Cohen-Macaulay
- 1980 MathSciNet hits for Cohen-Macaulay

How far can we take our method for giving a poset an EL-labeling?

Are there other classes of posets that have an EL-labeling?

Definition A finite lattice L is said to be supersolvable if it contains a maximal chain \mathfrak{m} , called an M-chain of L which together with any other chain of L generates a distributive sublattice.

EXAMPLE

Remark Our EL-labeling of supersolvable lattices have the additional nice property that the labels along any maximal chain give a permutation.

In this case, we call our labeling an S_n *EL-labeling* or *snelling*, for short.

THEOREM A lattice is supersolvable if and only if it has an S_n EL-labeling.

We want the chain \mathfrak{m}_0 with labels $1, 2, 3, \ldots, n$ to be an M-chain. Let \mathfrak{m} be any other chain of L. (It suffices to consider only maximal chains.) The proof relies on the equivalence of the following 3 posets:

- 1. The sublattice of L generated by \mathfrak{m} and \mathfrak{m}_0
- 2. Let $\omega_{\mathfrak{m}}$ be the permutation labeling \mathfrak{m} . We construct a poset $P_{\omega_{\mathfrak{m}}}$ on the numbers $1, 2, \ldots, n$ by drawing an edge from i up to j if i < j and i and j are the "right way around" in $\omega_{\mathfrak{m}}$. Then we construct and label $J(P_{\omega_{\mathfrak{m}}})$ as before.
- 3. If \mathfrak{m} has a *descent* at i, then we define $S_i(\mathfrak{m})$ to be the unique chain in L differing from \mathfrak{m} only at level i and having no descent at i. If \mathfrak{m} doesn't have a descent at i then we set $S_i(\mathfrak{m}) = \mathfrak{m}$. We define $Q_{\mathfrak{m}}$ to be the "closure" of \mathfrak{m} in L under the action of $S_1, S_2, \ldots, S_{n-1}$.

The action of $S_1, S_2, \ldots, S_{n-1}$ has the following properties:

- 1. It is a local action: it only changes a chain in one place
- 2. $S_i^2 = S_i$
- 3. $S_i S_j = S_j S_i \text{ if } |i j| \ge 2$
- 4. $S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1}$
- 5. $\operatorname{ch}(\chi(x)) = \omega(F_L(x))$ In other words, choose any subset S of $1, 2, \ldots, n-1$. Then the number of chains of L stopping only at the levels in S equals the number of maximal chains fixed under S_i for all $i \notin S$.

An action on the maximal chains of a lattice having all of these properties is called a good $\mathcal{H}_n(0)$ action.

