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Outline

I Introduction to the Schur-positivity poset

I Some known properties

I Some unknown properties

I Focus on necessary conditions for A ≤s B.
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Preview

n = 4
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Skew

Schur functions

I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.

I Young diagram.
Example:
λ

/µ

= (4,4,3,1)

/(3,1)

I Semistandard Young tableau
(SSYT)

7

4

1 3 3 4

944

6 65

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431

/31

=

x1x2
3

x4x5x2
6 x7x9 + · · · .
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Skew Schur functions

I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.
I Young diagram.

Example:
λ/µ = (4,4,3,1)/(3,1)

I Semistandard Young tableau
(SSYT)

6
4 9

5
7

6
4

4

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is then
defined by

sλ/µ =
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431/31 =

x1x2
3

x3
4 x5x2

6 x7x9 + · · · .
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Some reasons why we care

I Skew Schur functions are symmetric in the variables
x = (x1, x2, . . .).

I The Schur functions form a basis for the algebra of symmetric
functions (over Q, say).

I Connections to algebraic geometry (Schubert calculus),
representation theory (Sn, GL(n,C)).
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Littlewood-Richardson Rule

sλ/µ =
∑
ν

cλµνsν .

Littlewood-Richardson rule [Littlewood-Richardson 1934,
Schützenberger 1977, Thomas 1974].

cλµν is the number of SSYT of shape λ/µ and content ν whose
reverse reading word is a ballot sequence.

Example.
When λ = (5,5,2,1), µ = (3,2), ν = (4,3,1), we get cλµν = 2.

11221312

3
1

2 2
11

2
1

11
2 21

21
3 2

1 3
1 2 2

1 1

11222113
to prevent bottom from getting cut off

No 11221213 Yes Yes
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Main definitions

Key point: cλµν ≥ 0.

sλ/µ is Schur-positive, i.e. coefficients in Schur expansion are all
non-negative.

Natural connections between Schur-positivity and representation
theory.

sλ/µ =
∑
ν

cλµνsν .

When is sλ/µ − sσ/τ Schur-positive?

Definition.
Let A, B be skew shapes. We say that

A ≤s B if sB − sA

is Schur-positive.

Goal: Characterize the Schur-positivity order ≤s in terms of skew
shapes.
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Example of a Schur-positivity poset

If A ≤s B then |A| = |B|.
Call the resulting
ordered set Pn.
Then P4:
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More examples

P5: P6:
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Known properties: first things first

≤s is not yet anti-symmetric. So identify skew shapes such as

1.

[EC2, Exercise 7.56(a), 2-]

2.

3.

Definition.
A ribbon is a connected skew shape containing no 2× 2 rectangle.
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Known properties: skew Schur equality

Question: When is sA = sB ?

I Lou Billera, Hugh Thomas, Stephanie van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions
I Vic Reiner, Kristin Shaw, Stephanie van Willigenburg (2006)
I McN., Stephanie van Willigenburg (2006)

Enough for our purposes: we can consider Pn to be a poset.

Open Problem: Find necessary and sufficient conditions on A and B
for sA = sB.
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Known properties: Sufficient conditions

Sufficient conditions for A ≤s B:
I Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
I Andrei Okounkov (1997)
I Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon

(2003)
I Anatol N. Kirillov (2004)
I Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
I François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
I ...

Note: sλ/µsσ/τ is a special case of sA.

σ/τ

λ/µ
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Lam, Postnikov and Pylyavskyy’s result

Theorem [LPP]. For skew shapes λ/µ and σ/τ ,

sλ/µsσ/τ ≤s sλ∪σ/µ∪τsλ∩σ/µ∩τ

Examples.

s

s
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Known properties: special classes of skew shapes

Notation. Write λ 4 µ if λ is less than or equal to µ in dominance
order, i.e.

λ1 + · · ·λi ≤ µ1 + · · ·µi for all i .

I Macdonald’s “Symmetric functions and Hall polynomials”: For
horizontal strips, A ≤s B if and only if

row lengths of A < row lengths of B

s

Pn restricted to horizontal strips: (dual of the) dominance lattice.

I Ron King, Trevor Welsh, Stephanie van Willigenburg (2007): For
ribbons with decreasing row lengths and equal numbers of rows,
same is true.

321 = = 222s
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Known properties: special classes of skew shapes

I McN., Stephanie van Willigenburg (2007): For a given number of
boxes and rows,
the poset of multiplicity-free ribbons
is always of the form

612111

511113

531111

351111

441111

411114

411141

311151

414111

315111

311511

411411

511311

513111

511131

211161

261111

216111

211611

611211

611121

621111

711111

611112

117111

171111

111711

111171 211116

311115
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Unknown properties: general ribbons

Open Problem: Explain the Schur-positivity order for general ribbons.

Suffices to fix #boxes and #rows.

Ribbons with 9 boxes
and 4 rows:

1431

2322

3132

3213

3141

4131 3411

4311

5211

4113

6111

2231

1611 5112

5121 2511

2151

1521

4221

4122

2412

2421

2241

3321

3231

3312

3222

4212
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Unknown properties: maximal connected skew shapes

Question: What are the
maximal elements of Pn
among the connected
skew shapes?

Conjecture [McN., Pylyavskyy]. For each r = 1, . . . ,n, there is a
unique maximal connected element with r rows, namely the ribbon
marked out by the diagonal of an r -by-(n − r + 1) box.

Examples.
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Necessary conditions

Question: Suppose A ≤s B (i.e. sB − sA is Schur-positive).
Then what can we say about the shapes A and B?

Such necessary conditions for A ≤s B give us a way to show that
C 6≤s D.

Example. If A ≤s B, then |A| = |B|.

The Schur-Positivity Poset Peter McNamara 18



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1
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+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”: 1
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Classical necessary conditions

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

Corollary. If A ≤s B, then

rows(A) < rows(B) and cols(A) < cols(B).

Proof: A ≤s B
⇔ sB − sA is Schur-positive
⇒ support(A) ⊆ support(B)

⇒ rows(A) < rows(B) and (cols(A))t 4 (cols(B))t

⇔ rows(A) < rows(B) and cols(A) < cols(B). �

The Schur-Positivity Poset Peter McNamara 20



Classical necessary conditions

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

Corollary. If A ≤s B, then

rows(A) < rows(B) and cols(A) < cols(B).

Proof: A ≤s B
⇔ sB − sA is Schur-positive
⇒ support(A) ⊆ support(B)

⇒ rows(A) < rows(B) and (cols(A))t 4 (cols(B))t

⇔ rows(A) < rows(B) and cols(A) < cols(B). �

The Schur-Positivity Poset Peter McNamara 20



Classical necessary conditions

Corollary. If A ≤s B, then

rows(A) < rows(B) and cols(A) < cols(B).

Example.

C D ==

rows(C) = 2221 ≺ 3211 = rows(D).

Thus C 6≤s D.
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Key definitions: generalize rows(A) and cols(A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlapk (i) be the number of columns occupied in common by rows
i , i + 1, . . . , i + k − 1.
Then rowsk (A) is the weakly decreasing rearrangment of
(overlapk (1),overlapk (2), . . .).
Define colsk (A) similarly.
Example.

=

3
2

2 2
2 2

1
1 1

1 1

A

I overlap1(i)=length of the i th row. Thus rows1(A) = rows(A).
I overlap2(1) = 2, overlap2(2) = 3, overlap2(3) = 1,

overlap2(4) = 1, so rows2(A) = 3211.
I rows3(A) = 11, rowsk (A) = ∅ for k > 3.
I cols1(A) = cols(A) = 33222, cols2(A) = 2221, cols3(A) = 211,

cols4(A) = 11, colsk (A) = ∅ for k > 4.
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Necessary conditions

Theorem [RSvW]. Let A and B be skew shapes. If sA = sB, then

rowsk (A) = rowsk (B) for all k .

Theorem [McN.]. Let A and B be skew shapes. If sB − sA is
Schur-positive, then

rowsk (A) < rowsk (B) for all k .

In fact, it suffices to assume that support(A) ⊆ support(B).

Corollary. Let A and B be skew shapes. If support(A) = support(B),
then

rowsk (A) = rowsk (B) for all k .
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Relating rowsk(A) and colsk(A)

Let rectsk ,`(A) denote the number of k × ` rectangular subdiagrams
contained inside A.

=

3
2

2 2
2 2

1
1 1

1 1

A rects3,1(A) = 2, rects2,2(A) = 3, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:
I rowsk (A) = rowsk (B) for all k ;
I cols`(A) = cols`(B) for all `;
I rectsk ,`(A) = rectsk ,`(B) for all k , `.

Theorem [McN]. Let A and B be skew shapes. TFAE:
I rowsk (A) < rowsk (B) for all k ;
I cols`(A) < cols`(B) for all `;
I rectsk ,`(A) ≥ rectsk ,`(B) for all k , `.
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Summary result

Theorem [McN]. Let A and B be skew shapes. If A ≤s B, i.e. sB − sA
is Schur-positive, or if A and B satisfy the weaker condition that
support(A) ⊆ support(B), then the following three equivalent sets of
conditions are true:

I rowsk (A) < rowsk (B) for all k ;
I cols`(A) < cols`(B) for all `;
I rectsk ,`(A) ≥ rectsk ,`(B) for all k , `.

Example.

C D ==

rows(C) = 2221 ≺ 3211 = rows(D). Thus C 6≤s D.

rows2(C) = 21 � 111 = rows2(D). Thus D 6≤s C.
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Outlook

I Instead of looking at the Schur-positivity poset, could look at the
support containment poset; it seems to have more structure.

I Almost nothing is known about the covering relations in Pn.

I Why restrict to skew Schur functions? Could try:
I Stanley symmetric functions
I Hall-Littlewood polynomials
I LLT-polynomials
I Cylindric Schur functions
I Skew Grothendieck polynomials
I Poset quasisymmetric functions
I Wave Schur functions
I . . .
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