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Tilings

I No overlap allowed
I Must completely cover the region

: area of region equals
the sum of the areas of the tiles.

Applications:
I Archaeology: reassembling fragments.
I Packing: loading trucks, allocating bandwidth, scheduling

airline flights.

The kind of questions a mathematician might ask:
I Is there a tiling with the given pieces?
I Is it easy to prove that a tiling doesn’t exist?
I How many tilings are there?
I What does a typical tiling look like?

Based on an expository paper of Richard Stanley and Federico
Ardila.
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Is there a tiling?

Tetris pieces:

Can we tile a 6 × 5 rectangle with the tetris pieces, using each
piece as many times as we like?

No.

Each piece has 4 boxes.
There are 30 boxes to fill.
4 does not divide into 30 evenly. (Divisibility argument)
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Can we tile a chessboard with dominoes?
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Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes?

No.

62 squares: 30 black, 32 white.

Every domino covers exactly one black square and one white
square.
But there are not the same number of white squares as black
squares. (Coloring argument)
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What if we remove 1 black and 1 white square?

Yes.

62 squares: 31 black, 31 white.
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Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.

Question
If a tiling doesn’t exist, is there an “easy” way to demonstrate
that?

No, in general.
Beauquier, Nivat, Rémila and Robson (1995):
for 1× n tiles with n > 2, determining if a region can be tiled is
an NP-complete problem.

Yes, for domino tilings.
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Hall’s Marriage Theorem

Theorem (Hall’s Marriage Theorem, 1935)
n women, n men.
Each woman W, compatible husbands SW .
Perfect matching exists if and only if:
for all i and for every subset of i women, the union of the
corresponding SW has size at least i.

George

Nicky

Kian

Mark

Shane

John

Paul

Ringo

Application
Women: black squares.
Men: white squares.
Tiling⇐⇒ perfect matching.
No tiling: some subset of black squares which shows this.
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How many tilings of a chessboard with dominoes?

Fisher & Temperley, Kasteleyn (independently, 1961):
The number of tilings of a 2m × 2n rectangle with dominoes is

4mn
m∏

j=1

n∏
k=1

(
cos2 jπ

2m + 1
+ cos2 kπ

2n + 1

)
.

For example, for a chessboard m = n = 4, and we get

416
4∏

j=1

4∏
k=1

(
cos2 jπ

9
+ cos2 kπ

9

)
.

This is an amazing formula!
e.g. cos2 20◦ = 0.8830222216 . . ..

Answer = 12,988,816 .
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How many tilings of Aztec diamonds with dominoes?

AZ(3) AZ(7)

AZ(1)

AZ(2)

Tilings with dominoes:
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How many tilings of Aztec diamonds (continued)

2,8,64,1024, . . . .

Elkies, Kuperberg, Larsen & Propp (1992):
In general, AZ(n) has 2

n(n+1)
2 tilings with dominoes. (4 proofs)

Now around 12 proofs, but none are really simple.

Open Problem
Find a simple proof that the number of tilings of AZ(n) is 2

n(n+1)
2 .

2
n(n+1)

2 = 2(
n+1

2 ) = 21+2+···+n



What does a typical tiling look like?

No obvious structure.
But if we work with Aztec diamonds....



A typical tiling of AZ(50)



Tilings and global warming

Jockusch, Propp and Shor (1995).
The Arctic Circle Theorem. Fix ε > 0. Then for all sufficiently
large n, all but an ε fraction of the domino tilings of AZ(n) will
have a temperate zone whose boundary stays uniformly within
distance εn of the inscribed circle.

temperate
zone

In other words: almost everything outside and not too close to
the circle is “frozen” in place.

Similar phenomena observed for other cases.



“To infinity and beyond” – Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve:
like a 2-dim verison
of the Cantor Set

Area of black portion = 1 · 3
4
· 3

4
· · · = 0.

Conclusion: in the limit, the white triangles tile the big triangle.

Area of white potion =
1
4
+

1
4

(
3
4

)
+

1
4

(
3
4

)2

+ · · ·

=
1
4

1− 3
4

= 1.
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Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Designer: Eri Matsui
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Another Sierpinski triangle side comment

Another famous triangle is Pascal’s triangle.
Take the first 2n rows:

6 1

151051

1 1464

1 3 3 1
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1 1
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6

35211 21 7 17

1 15 20 15
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From a series to a tiling
1

1× 2
+

1
2× 3

+
1

3× 4
+

1
4× 5

+ · · · =
∞∑

n=1

1
n(n + 1)

=
∞∑

n=1

(
A
n
+

B
n + 1

)
=
∞∑

n=1

(
1
n
+
−1

n + 1

)
= 1.

1/5 + . . . 

1/2
1/2

1

+ 1/3 + 1/4 +
1/4

?1

1

1/3

Open Problem
Find a way to tile the whole region, or show that no tiling exists.
Paulhus (1998): side length 1.000000001
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Tiling infinite regions

Alhambra palace, Granada, Spain.

Abstract Algebra: There are essentially 17 different tiling
patterns of the plane that have translation symmetries in two
different directions.
Plane crystallographic groups / wallpaper groups
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Another Alhambra tiling



Escher tilings

Maurits Cornelis Escher (1898-1972): Although I am absolutely
without training in the exact sciences, I often seem to have
more in common with mathematicians that with my fellow
artists.



Another Escher tiling



Opposite direction: no symmetry at all!

Sir Roger Penrose



Another Penrose tiling


