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Based on an expository paper of Richard Stanley and Federico
Ardila.
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Is there a tiling?

Tetris pieces:

Can we tile a 6 x 5 rectangle with the tetris pieces, using each
piece as many times as we like?

No.

Each piece has 4 boxes.
There are 30 boxes to fill.
4 does not divide into 30 evenly. (Divisibility argument)
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Can we tile a this modified chessboard with dominoes? No.
62 squares: 30 black, 32 white.

Every domino covers exactly one black square and one white

square.
But there are not the same number of white squares as black

squares. (Coloring argument)
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares? No.
60 squares: 30 black, 30 white.

Question
What if the holey chessboard has to be connected?



Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.

Question
If a tiling doesn’t exist, is there an “easy” way to demonstrate
that?



Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.

Question
If a tiling doesn’t exist, is there an “easy” way to demonstrate
that?

No, in general.

Beaugquier, Nivat, Rémila and Robson (1995):

for 1 x ntiles with n > 2, determining if a region can be tiled is
an NP-complete problem.



Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.

Question
If a tiling doesn’t exist, is there an “easy” way to demonstrate

that?

No, in general.

Beaugquier, Nivat, Rémila and Robson (1995):

for 1 x ntiles with n > 2, determining if a region can be tiled is
an NP-complete problem.

Yes, for domino tilings.




Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.

Question
If a tiling doesn’t exist, is there an “easy” way to demonstrate

that?

No, in general.

Beaugquier, Nivat, Rémila and Robson (1995):

for 1 x ntiles with n > 2, determining if a region can be tiled is
an NP-complete problem.

Yes, for domino tilings.




Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)

n women, n men.

Each woman W, compatible husbands Sy .

Perfect matching exists if and only if:

for all i and for every subset of i women, the union of the
corresponding Sy, has size at least i.

Nicky John

Kian Paul

Mark : Ringo
Shane

George



Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)

n women, n men.

Each woman W, compatible husbands Sy .

Perfect matching exists if and only if:

for all i and for every subset of i women, the union of the
corresponding Sy, has size at least i.

Nicky John
Kian Paul
Mark Ringo

Shane George



Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)

n women, n men.

Each woman W, compatible husbands Sy .

Perfect matching exists if and only if:

for all i and for every subset of i women, the union of the
corresponding Sy, has size at least i.

Nicky John
Kian Paul
Mark Ringo

Shane George



Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)

n women, n men.

Each woman W, compatible husbands Sy .

Perfect matching exists if and only if:

for all i and for every subset of i women, the union of the
corresponding Sy, has size at least i.

Nicky John
Kian Paul
Mark Ringo
Shane George

Application

Women: black squares.

Men: white squares.

Tiling <= perfect matching.

No tiling: some subset of black squares which shows this.
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How many tilings of a chessboard with dominoes?

Fisher & Temperley, Kasteleyn (independently, 1961):
The number of tilings of a 2m x 2n rectangle with dominoes is

AR jm km
mn 2 2
4 ,-I_|1 1 <cos om 1 + cos 2n+1> .

For example, for a chessboard m = n = 4, and we get

4
416HH (cos T | cos? k97T>

j=1 k=1

This is an amazing formula!
e.g. cos?20° = 0.8830222216.. . ..

Answer = 12,988,816 .
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How many tilings of Aztec diamonds (continued)

2,8,64,1024, . ...

Elkies, Kuperberg, Larsen & Propp (1992):
n(n+1
In general, AZ(n) has 2 S tilings with dominoes. (4 proofs)

Now around 12 proofs, but none are really simple.

Open Problem
n(n+1
Find a simple proof that the number of tilings of AZ(n) is 2 o

n(n+1) n+1

o™ _o("3') — ol +2+4n




What does a typical tiling look like?

No obvious structure.
But if we work with Aztec diamonds....



A typical tiling of AZ(50)




Tilings and global warming

Jockusch, Propp and Shor (1995).

The Arctic Circle Theorem. Fix e > 0. Then for all sufficiently
large n, all but an ¢ fraction of the domino tilings of AZ(n) will
have a temperate zone whose boundary stays uniformly within
distance en of the inscribed circle.

temperate

In other words: almost everything outside and not too close to
the circle is “frozen” in place.

Similar phenomena observed for other cases.
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“To infinity and beyond” — Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve:
like a 2-dim verison
of the Cantor Set

, 3
Area of black portion =1 - 11

Conclusion: in the limit, the white triangles tile the big triangle.

-=0.

L 1 1/3\ 1/38)\?
Area of white potion = 4+4<4>+4(4> 4.
1
— A _q
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Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Designer: Eri Matsui



Another Sierpinski triangle side comment

Another famous triangle is Pascal’s triangle.
Take the first 2" rows:

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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From a series to a tiling

1 n 1 n 1 n 1 N _i 1
1x2 2x3 3x4 4x5 N n(n+1)
< (A B 1
- Z:(EJrn+1) _;(E+n+1) =1
1/2-+1/3-+1/4|;|+1ISE +...

Open Problem
Find a way to tile the whole region, or show that no tiling exists.
Paulhus (1998): side length 1.000000001



Tiling infinite regions

Alhambra palace, Granada, Spain.




Tiling infinite regions

Alhambra palace, Granada, Spain.

Abstract Algebra: There are essentially 17 different tiling

patterns of the plane that have translation symmetries in two
different directions.

Plane crystallographic groups / wallpaper groups



Another Alhambra tiling
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Escher tilings

Maurits Cornelis Escher (1898-1972): Although | am absolutely
without training in the exact sciences, | often seem to have
more in common with mathematicians that with my fellow
artists.




Another Escher tiling




Opposite direction:

Sir Roger Penrose

no symmetry at all!
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Another Penrose tiling

o> 5.




