Edge Labellings of Partially Ordered Sets

Peter McNamara

Thesis Defense 25nd April 2003

Slides available from

http://www-math.mit.edu/~mcnamara/

Outline:

- 1. Introduction
- 2. Supersolvable lattices and S_n EL-labellings
- 3. Actions on the maximal chains
- 4. Left modularity and extensions (joint with H. Thomas)

Definition A partially ordered set P is said to be a *lattice* if every two elements x and y of P have a least upper bound and a greatest lower bound.

We call the least upper bound the *join* of x and y and denote it by $x \vee y$.

We call the greatest lower bound the meet of x and y and denote it by $x \wedge y$.

(All our posets will be finite.)

We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
 and $x \land (y \lor z) = (x \land y) \lor (x \land z)$

for all elements x, y and z of L.

EXAMPLE An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$. The lattice of order ideals of a poset P is a distributive lattice.

THEOREM (FTFDL Birkhoff) A finite lattice L is distributive if and only if it is the lattice J(P) of order ideals of some poset P.

Definition An edge labelling of a poset P is said to be an EL-labelling if:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The sequence of labels along this increasing maximal chain lexicographically precede the labels along any other maximal chain of [x, y].

Who cares? P is a bounded graded poset of rank n. Let S be any subset of $\{1, 2, \ldots, n-1\}$.

• Flag f-vector $\alpha_P(S)$: number of chains in P with rank set S.

If P has an EL-labelling: number of maximal chains of P with descent set contained in S.

• Flag h-vector $\beta_P(S)$:

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{|S-T|} \alpha_P(T).$$

If P has an EL-labelling: number of maximal chains of P with descent set S. So $\beta_P(S) \geq 0$.

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^n \beta_P([n-1]).$
- EL-labelling \Rightarrow Shellable \Rightarrow Cohen-Macaulay

Definition An edge labelling of a poset P is said to be an S_n EL-labelling if:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The labels along any maximal chain form a permutation of $\{1, 2, ..., n\}$.

What other classes of posets have S_n EL-labellings?

Definition (R. Stanley, '72) A finite lattice L is said to be *supersolvable* if it contains a maximal chain \mathfrak{m}_0 , called an M-chain of L which together with any other chain of L generates a distributive sublattice.

EXAMPLES

- Distributive lattices
- Modular lattices
- The lattice of partitions of $\{1, 2, ..., n\}$
- The lattice of non-crossing partitions of $\{1, 2, \ldots, n\}$
- The lattice of subgroups of a supersolvable group

QUESTION "Are there any other lattices that have S_n EL-labellings?"

THEOREM A lattice is supersolvable if and only if it has an S_n EL-labelling.

EXAMPLE Biagioli & Chapoton: Lattice of leaf labelled binary trees
www.arxiv.org/math.CO/0304132

We want the chain \mathfrak{m}_0 with labels $1, 2, 3, \ldots, n$ to be an M-chain. Let \mathfrak{m} be any other chain of L. (It suffices to consider only maximal chains.) The proof relies on the equivalence of the following 3 posets:

- 1. The sublattice $L_{\mathfrak{m}}$ of L generated by \mathfrak{m} and \mathfrak{m}_0
- 2. Let $\omega_{\mathfrak{m}}$ be the permutation labelling \mathfrak{m} . Construct poset $P_{\omega_{\mathfrak{m}}}$ on $1, 2, \ldots, n$:

 $i < j \text{ in } P_{\omega_{\mathfrak{m}}} \iff (i,j) \text{ isn't an inversion in } \omega_{\mathfrak{m}}$

for all i < j.

Construct and label $J(P_{\omega_{\mathfrak{m}}})$ as before.

3. If \mathfrak{m} doesn't have a descent at i:

Let $U_i(\mathfrak{m}) = \mathfrak{m}$.

If \mathfrak{m} has a descent at i:

Define $U_i(\mathfrak{m})$ to be the unique chain in L differing from \mathfrak{m} only at rank i and having no descent at i.

 $Q_{\mathfrak{m}} :=$ "closure" of \mathfrak{m} in L under the action of $U_1, U_2, \ldots, U_{n-1}$.

Leaving supersolvability behind...

Let P denote a bounded graded poset of rank n with an S_n EL-labelling.

The action of $U_1, U_2, \ldots, U_{n-1}$ has the following properties:

- 1. It is a local action: $U_i(\mathfrak{m})$ equals \mathfrak{m} except possibly at rank i.
- 2. $U_i^2 = U_i$.
- 3. $U_i U_j = U_j U_i \text{ if } |i j| \ge 2.$
- 4. $U_iU_{i+1}U_i = U_{i+1}U_iU_{i+1}$.

Compare with:

Definition The *Hecke algebra* of type A_{n-1} is the $\mathbb{C}(q)$ -algebra generated by $T_1, T_2, \ldots, T_{n-1}$ with relations:

1.
$$T_i^2 = (q-1)T_i + q$$
.

2.
$$T_i T_j = T_j T_i \text{ if } |i - j| \ge 2.$$

3.
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
.

So we call our action a *local 0-Hecke algebra* action.

Duchamp, Hivert, Krob, Leclerc, Thibon.

One further desirable property:

5. $\operatorname{ch}(\chi_P(x)) = \omega(F_P(x))$ What the Hecke?

Boils down to:

Choose any subset S of $\{1, 2, ..., n-1\}$. Then the number $\alpha_P(S)$ of chains of P with rank set S equals the number of maximal chains fixed under U_i for all $i \notin S$.

An action on the maximal chains of a lattice having all of these properties is called a *good* 0-Hecke algebra action.

"Good": Simion and Stanley.

What other posets have good 0-Hecke actions? Example

m	$U_1(\mathfrak{m})$	$U_2(\mathfrak{m})$	Fixed under
$\mathfrak{m}_1 : a < b < d < f$	\mathfrak{m}_3	\mathfrak{m}_2	Ø
$\mathfrak{m}_2: a < b < e < f$	\mathfrak{m}_4	\mathfrak{m}_2	{2}
$\mathfrak{m}_3: a < c < d < f$	\mathfrak{m}_3	\mathfrak{m}_4	{1}
$\mathfrak{m}_4: a < c < e < f$	\mathfrak{m}_4	\mathfrak{m}_4	$\{1,2\}$

This gives a local 0-Hecke action. Also,

$\underline{\hspace{1cm}}$	Ø	{1}	{2}	$\{1, 2\}$
$\alpha_P(S)$	1	2	2	4
# chains fixed under U_i for all $i \notin S$	1	2	2	4

Therefore, this is a good 0-Hecke algebra action.

Definition A graded poset P is said to be bowtie-free if it does not contain distinct elements a, b, c, d connected by edges as shown:

Example Lattices are bowtie-free.

Example Non-lattices can be bowtie-free and also have an S_n EL-labelling:

THEOREM Let P be a bounded graded bowtie-free poset of rank n. Then P has a good 0-Hecke algebra action if and only if P has an S_n EL-labelling.

Idea of proof (Stanley):

- 1. Suppose P has a unique chain \mathfrak{m}_0 fixed under $U_1, U_2, \ldots, U_{n-1}$.
- 2. Given \mathfrak{m} we can find $U_{i_1}, U_{i_2}, \ldots, U_{i_r}$ with r minimal such that $U_{i_1}U_{i_2}\cdots U_{i_r}(\mathfrak{m})=\mathfrak{m}_0$.
- 3. Define $\omega_{\mathfrak{m}} = s_{i_1} s_{i_2} \cdots s_{i_r}$. Then $\omega_{\mathfrak{m}}$ is well-defined.
- 4. Label the edges of m from bottom to top by $\omega_{\mathfrak{m}}(1), \omega_{\mathfrak{m}}(2), \ldots, \omega_{\mathfrak{m}}(n)$. This gives an edge labelling of P and this edge labelling is an S_n EL-labelling.

COROLLARY Let L be a lattice. TFAE:

- $1.\ L$ is supersolvable
- 2. L has an S_n EL-labelling
- 3. L has a good 0-Hecke algebra action

QUESTION When does a **poset** have an S_n EL-labelling?

Connections with modularity...

Suppose L is lattice with $y \leq z$. Always true:

$$(x \lor y) \land z \ge (x \land z) \lor y.$$

Definition An element x of a lattice L is said to be *left modular* if, for all $y \leq z$ in L, we have

$$(x \lor y) \land z = (x \land z) \lor y.$$

A chain of L is *left modular* if each of its elements is left modular.

Suppose L is a **graded** lattice.

$$\left| egin{array}{c} L ext{ is} \\ ext{supersolvable} \end{array} \right| \Longleftrightarrow \left| egin{array}{c} L ext{ has an} \\ S_n ext{ EL-labelling} \end{array} \right|$$

L has a left modular maximal chain

THEOREM Let L be graded lattice. TFAE:

- 1. L is supersolvable
- 2. L has an S_n EL-labelling
- 3. L has a good 0-Hecke algebra action
- 4. L has a left modular maximal chain

How can we extend this?

- \bullet 4: L need not be graded
- 2: L need not be a lattice

Definition Let P be a bounded poset. An EL-labelling γ of P is said to be *interpolating* if, for any $y \lessdot u \lessdot z$, either

- (i) $\gamma(y, u) < \gamma(u, z)$ or
- (ii) the increasing chain from y to z, say $y = w_0 \lessdot w_1 \lessdot \cdots \lessdot w_r = z$, has the properties that its labels are strictly increasing and that $\gamma(w_0, w_1) = \gamma(u, z)$ and $\gamma(w_{r-1}, w_r) = \gamma(y, u)$.

THEOREM A lattice has an interpolating EL-labelling if and only if it has a left modular maximal chain.

Generalizing to non-lattices:

P: a bounded poset with an S_n EL-labelling.

 \mathfrak{m}_0 : its increasing maximal chain.

Some "left modularity" property?

When $x \in \mathfrak{m}_0$, $x \vee y$ and $x \wedge y$ are well-defined.

In a lattice: $(x \lor y) \land z \ge y$ whenever $z \ge y$.

When $x \in \mathfrak{m}_0$, $(x \vee y) \wedge_y z$ is well-defined for $y \leq z$. Similarly, $(x \wedge z) \vee^z y$ is well-defined.

We call x a viable element of P.

We call \mathfrak{m}_0 a *viable* maximal chain.

THEOREM A bounded poset has an interpolating EL-labelling if and only if it has a viable left modular maximal chain.

Finally, generalizing supersolvability:

Suppose P has a viable maximal chain \mathfrak{m}_0 . So $(x \vee y) \wedge_y z$ and $(x \wedge z) \vee^z y$ are well-defined for $x \in \mathfrak{m}_0$ and $y \leq z$ in P.

Given any chain \mathfrak{c} of P, we define $R_{\mathfrak{m}_0}(c)$ to be the smallest subposet of P satisfying:

- (i) \mathfrak{m}_0 and \mathfrak{c} are contained in $R_{\mathfrak{m}_0}(c)$,
- (ii) If $y \leq z$ in P and y and z are in $R_{\mathfrak{m}_0}(c)$, then so are $(x \vee y) \wedge_y z$ and $(x \wedge z) \vee^z y$ for any x in \mathfrak{m}_0 .

Definition We say that a finite bounded poset P is supersolvable with M-chain \mathfrak{m}_0 if \mathfrak{m}_0 is a viable maximal chain and $R_{\mathfrak{m}_0}(c)$ is a distributive lattice for any chain \mathfrak{c} of P.

THEOREM Let P be a bounded graded poset of rank n. TFAE:

- 1. P has an S_n EL-labelling
- 2. P has a viable left modular maximal chain
- 3. P is supersolvable

7	೨
N	•

	Graded	Not nec. graded
	1. Supersolvable	1. ?
Lattice	 Supersolvable Solution Good 0-Hecke action Left mod. max. chain 	2. Interp. EL-labelling
	3. Good 0-Hecke action	3. ?
	4. Left mod. max. chain	4. Left mod. max. chain
Not	1. Supersolvable	1. ?
nec.	2. S_n EL-labelling	2. Interp. EL-labelling
Lattice	3. Good 0-Hecke action	3. ?
	(in bowtie-free case)	
	(in bowtie-free case) 4. Viable left mod. m.c.	4. Viable left mod. m.c.