Permutation Edge-Labellings of Partially Ordered Sets

Peter McNamara

CMS Summer 2002 Meeting 17th June 2002

Slides and preprint available from http://www-math.mit.edu/~mcnamara/

**Definition** A partially ordered set (poset) P is said to be a *lattice* if every two elements x and y of P have a least upper bound and a greatest lower bound.

We call the least upper bound the *join* of x and y and denote it by  $x \vee y$ .

We call the greatest lower bound the meet of x and y and denote it by  $x \wedge y$ .





We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

for all elements x, y and z of L.



Example The lattice of  $order\ ideals$  of a poset P.



An edge-labelling of a poset P is said to be an  $S_n$  EL-labelling if it satisfies the following 2 conditions:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The labels along any maximal chain form a permutation of n.

## Who cares?

• EL-labelling  $\Rightarrow$  Shellable  $\Rightarrow$  Cohen-Macaulay

What other classes of posets have  $S_n$  EL-labellings?

**Definition** A finite lattice L is said to be supersolvable if it contains a maximal chain  $\mathfrak{m}$ , called an M-chain of L, which together with any other chain of L generates a distributive sublattice.

## EXAMPLE



QUESTION (R. Stanley) Are there any other lattices that have  $S_n$  EL-labellings?

THEOREM 1 A finite lattice has an  $S_n$ EL-labelling if and only if it is supersolvable.



We want the chain  $\mathfrak{m}_0$  with labels  $1, 2, 3, \ldots, n$  to be an M-chain. Let  $\mathfrak{m}$  be any other chain of L. (It suffices to consider only maximal chains.) The proof relies on the equivalence of the following 2 posets:

1. The sublattice of L generated by  $\mathfrak{m}$  and  $\mathfrak{m}_0$ 

2. If  $\mathfrak{m}$  has a *descent* at i, then we define  $T_i(\mathfrak{m})$  to be the unique chain in L differing from  $\mathfrak{m}$  only at level i and having no descent at i. If  $\mathfrak{m}$  doesn't have a descent at i then we set  $T_i(\mathfrak{m}) = \mathfrak{m}$ . Then we take the "closure" of  $\mathfrak{m}$  in L under the action of  $T_1, T_2, \ldots, T_{n-1}$ .



The action of  $T_1, T_2, \ldots, T_{n-1}$  has the following properties:

- 1. It is a local action: it only changes a chain in at most one place
- 2.  $T_i^2 = T_i$
- 3.  $T_i T_j = T_j T_i \text{ if } |i j| \ge 2$
- 4.  $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$
- 5.  $\operatorname{ch}(\chi(x)) = \omega(F_L(x))$

An action on the maximal chains of a lattice having all of these properties is called a good  $\mathcal{H}_n(0)$  action.

THEOREM 2 A finite lattice has a good  $\mathcal{H}_n(0)$  action if and only if it has an  $S_n$  EL-labeling.

## COROLLARY Let L be a finite lattice. TFAE:

- $1.\ L$  is supersolvable
- 2. L has an  $S_n$  EL-labelling
- 3. L has a good  $\mathcal{H}_n(0)$  action