
About half the talk and almost all the mathematics was done on
the blackboard and is not shown in these slides.
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So what is combinatorics?

The biggest unsolved problem in combinatorics:

Define “combinatorics.”

Vague: combinatorics is the study of finite sets.

Most well-known type of problem:
count the number of elements in some collection of objects (i.e.
enumerative questions).

Combinatorics is an honest subject. No adèles, no sigma-algebras.
You count balls in a box, and you either have the right number or you
haven’t....Don’t get the wrong idea—combinatorics is not just putting
balls into boxes. Counting finite sets can be a highbrow undertaking,
with sophisticated techniques.

– Gian-Carlo Rota
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What is a combinatorial proof?

Two types:
1. Bijective proofs: show that two sets have the same size.
2. Double counting proofs.

Goal for the rest of the talk: convince you that by counting the
same set in two different ways, we can give simple proofs of
some beautiful identities.

Claim: combinatorial proofs tell you why something is true.
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Application:

(x + y)6 = 1x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + 1y6.
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Algebraic proof of (4)

(1 + x)2n = ((1 + x)n)2.

Now expand both sides using the Binomial Theorem.(
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If these two sides are equal, the coefficients must match up. Extract
the coefficient of xn on both sides to get(
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Applying (1) gives(
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,

as required.
The Art of Double Counting Peter McNamara 8



Shameless plug

Math 319 in the spring: Combinatorics

Prereq: Math 280
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