
Sepsis is a syndrome of dysregulated 
inflammation caused by infection. In 2010 it was 
that 11th leading cause of death in the United 
States [1] and, in 2011, it was the single most 
expensive diagnosis treated in hospitals in the 
United States [2]. Septic shock is a subset of 
sepsis in which the complications induced by the 
presence of sepsis lead to an increase in the 
mortality of the patient.
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Finding a Septic Shock Diagnosis
Following a method developed by Ho et. al. [3] 
for determining Septic Shock, we classified 
periods of hypotension with a given patient as 
any period of time where hypostolic blood 
pressure was below 90.  Using the center time of 
each of these periods of hypotension, we 
summed up all the fluids given to the patient 
between this time and an hour before.  If the 
amount of fluids in this timespan exceeded 
600ml, the patient was considered to have 
hypotension despite fluid intake.  As such, if the 
patient was also determined to have Sepsis, we 
labeled the patient as positive for Septic Shock.  
The start time of that patient’s period of 
hypotension was used as the onset time.

To find a patient’s time of Septic Shock onset, to 
choose data points closest to this time, and to 
merge data from multiple sources into a single 
dataset, we used an object-oriented approach in 
Python.  After the proper data was collected and 
written to a csv file, the cleaning, processing, and 
modeling-making was done in R.

Predicting Septic Shock
To do our predictive analysis, we used four 
existing mathematical models: a Logistic 
Regression model, a Decision Tree model, a 
Support Vector Machine, and an Artificial Neural 
Network.  For each model, we used the following 
features for prediction: Heart Rate, Respiratory 
Rate, SOFA and SAPS scores, White Blood 
Cell count, Temperature, and Blood Pressure.
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We replicated models in the literature on the 
same publicly available data set on which they 
were developed. After getting these baseline 
results, which were similar to those in the 
literature, we applied the same models (with 
the same features and definitions) to privately 
held data. For a fixed model, its performance 
on the publicly available data and the privately 
held data were comparable. The quality of 
performance was especially good considering 
that the models were developed on 
demographic features of the individuals and 
only seven additional features. In some cases, 
our models were trained on larger data sets 
and also outperformed models in the literature.

The greatest challenge in the development of 
these models is the determination of which 
individuals have the right kind and right amount 
of data to be included in the models. In 
particular, identifying which patients had sepsis 
and when they had it (and septic shock if 
applicable) was essential for our experiments. 
The fact that in some cases we improved on 
existing results we think can be attributed to the 
choice that we made to identify patients as 
having sepsis in a way that is not based on the 
ICD-9 the patients have had.

For our next step, we will be examining how we 
might examine the paths of how patients move 
through the hospital, and use predictive 
techniques like Markov Chains on the GMC 
data.
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Each model yielded comparable results for the 
two data sets.   To measure the performance of 
our models, we created for each a Receiver 
Operating Characteristic (ROC) curve.
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Two datasets were used for comparative 
analysis.  First, we used the publically available 
Multiparameter Intelligent Monitoring in Intensive 
Care II (MIMIC-II) database, which was gathered 
from Boston’s Beth Israel Deaconess Medical 
Center [4].  Secondly, we analyzed medical data 
collected at the Geisinger Health System (GHS).

GMC AUC: .875, MIMIC AUC: .7451

GMC AUC: .75, MIMIC AUC: .8408

GMC AUC: .775, MIMIC AUC: .6656

GMC AUC: .8325, MIMIC AUC: .7385

Dataset: MIMIC-II GMC

Data amount >30,000 >18,000

# of ICU 27,542 17,864

Length of Stay 3 – 18 days 1 – 7 days

Resp. Average 
Samples/ Frequency

257.47 / 20 - 58 min 44.64 / 3 – 4 min

HR Average Samples/ 
Frequency

264.28 /27 - 67 min 42.26 /2.5 – 3.5 min

BP Average Samples/ 
Frequency

121.81 /61- 125 min 45.68 /2.6 – 3 min

 Temp Average 
Samples/ Frequency

62.69 /120-280 min 25.29 /5.8 – 6 min

SpO2 Average 
Samples/ Frequency

259.6 /28-68 min 38.73 /3.3 – 3.6 min

WBC Average 
Samples/ Frequency

13.52/490-134 3min 4.37 /33.4 – 37.5 min
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