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The motion of a falling liquid filament
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When a liquid drop falls from a fluid source with a slow flow rate, it remains attached to the source
by an elongating liquid filament until the filament pinches off. For many fluids, this pinch-off occurs
first near the end of the filament, where the filament joins to the liquid drop. For other fluids, the
filament pinches off at one or more interior points. In this paper, we study the motion of this
filament, and we make two points. First, the flow in this filament isnot that of a uniform jet. Instead,
we show experimentally that a different solution of the Navier–Stokes equations describes the
motion of this filament before it pinches off. Second, we propose a criterion for the location of the
first pinch-off. In particular, we analyze the linearized stability of the exact solution, both for an
inviscid fluid and for a very viscous fluid. Our criterion for pinch-off is based on this stability
analysis. It correctly predicts whether a given filament pinches off first near its ends or at points
within its interior for all of our experimental data. ©2000 American Institute of Physics.
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I. INTRODUCTION AND MAIN RESULTS

Anyone who has had a leaky water faucet is famil
with the phenomenon of falling liquid drops. A slow flow
rate causes a drop to grow to a critical size, after which
falls under the force of gravity; then the process repe
High-speed imaging now permits observation of this proc
with a level of detail that was formerly unavailable. Th
sequence of images in Fig. 1 exhibits the detailed proces
a particular liquid. As Fig. 1 shows, the drop starts to f
from the fluid source. As the drop falls, it remains connec
to the source by a long, straight liquid filament. This filame
grows thinner and longer, until eventually it pinches off, fi
at the bottom and then at the top of the filament. After pin
ing off, the elongated filament contracts vertically. Depen
ing on parameter values, the filament may exhibit spa
oscillations before it pinches off, and it may contract into o
satellite droplet~as in Fig. 1! or into more than one afte
pinching off. As we discuss in detail in the following, th
sequence of events is typical for many~but not all! fluids.

The process of drop formation, with or without gravit
has been the subject of a great deal of recent research1–11

Inspired in part by the results in Ref. 1, most of these pap
have focused on the detailed structure of the pinch-off. T
paper focuses instead on the motion of the filament visibl

a!Author to whom all correspondence should be addressed; electronic
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Fig. 1, which we call the ‘‘primary filament,’’ as it falls
under gravity. Our objective is to describe the motion of th
falling liquid filament, including: ~i! its time-dependent
shape and dynamics;~ii ! its instabilities; and~iii ! whether the
filament pinches off near its ends or at interior points.

A nearby but different problem, on the stability of
uniform liquid jet, was studied long ago by Plateau12

Rayleigh,13,14and Chandrasekhar.15 People often identify the
primary filament of a falling drop with a uniform jet, and a
instability on the primary filament is sometimes described
the literature as a ‘‘Rayleigh instability.’’ The starting poin
of our analysis is to deny this identification, because a u
form liquid jet and a falling liquid filament are different. Thi
can be seen in at least two ways.

~a! The axial velocity of a uniform liquid jet is uniform
in both time and space. The axial velocity of a falling liqu
filament cannot be uniform in time, because it accelerate
a uniform gravitational field. It is not uniform in space eithe

~b! As Fig. 1 shows, the radius of the falling filame
decreases as the filament grows in length, before pinch
off; the radius of a uniform jet is uniform in time. The tw
motions are different, and neither is a limit of the other.

In Sec. II, we derive an exact solution of the Navie
Stokes equations, in which the radius of the filament
creases in time according to

h~ t !5
H

At1t*
, ~1!il:
© 2000 American Institute of Physics
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551Phys. Fluids, Vol. 12, No. 3, March 2000 The motion of a falling liquid filament
where$H,t* % are arbitrary constants. This form of solutio
is quite robust: it applies as the filament elongates, for eit
a viscous or inviscid liquid, with or without surface tensio
with or without gravity. It is a simple generalization of
solution found by Frankel and Weihs16,17 in a very different
context. In Sec. II, we show experimentally that~1! describes
the behavior of a falling liquid filament until it starts to pinc
off. The solution applies to the filament as it appears befo
during, and a short while after Fig. 1~b!. In Fig. 1~c!, the
filament has already started necking near the drop. The
responding velocity and pressure fields are also given in S
II.

The motion associated with~1! is subject to the same
kind of instability that affects a uniform liquid jet. In Sec. II
we analyze the linearized stability of a falling filament of
inviscid liquid, before it pinches off. The analysis is simil
to that done by Rayleigh13 for an inviscid liquid jet. Our
results turn out to be identical to those of Frankel a
Weihs.16 Moreover, the results for a falling filament compa
nicely with those of Rayleigh13 for a uniform jet. One differ-
ence is that every uniform inviscid jet is unstable, but so
falling inviscid filaments are linearly stable.

In Sec. IV, we analyze the linear stability of a fallin
filament of a viscous liquid, again before pinch-off. As in t
inviscid case, our basic analysis is similar to that of Fran
and Weihs,17 and it results in a complicated set of integr
differential equations. For avery viscous liquid, we show
that these integro-differential equations reduce to ordin
differential equations, which can be analyzed in compl
detail. For a very viscous liquid, every falling filament
unstable.

A surprising consequence of the two stability analyses
Secs. III and IV is that some falling liquid filaments a
destabilizedby making the fluid more viscous.

The filament shown in Fig. 1 pinches off first near
ends, where it connects to the falling drop at its bottom a
to the fluid source at its top. In most of the experime
known to us,2–5,11pinch-off occurs first near the ends of th

FIG. 1. Evolution of a drop from its formation through the formation of
satellite drop. The resolution is 93.3mm/pixel. The size of each image i
0.58832.22 cm2. The times of the images~referenced to times shown in
Figs. 2 and 5! are:~a! 20.0486 s,~b! 0.0097 s,~c! 0.0167 s,~d! 0.0214 s,~e!
0.0274 s,~f! 0.0330 s,~g! 0.0443 s. The kinematic viscosity~n! is 0.75
cm2/s. This experiment used fluid A1 in Table I.~Figure reprinted with
permission of the Physics of Fluids.!
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filament, rather than somewhere in the middle. This is ca
‘‘end-pinching’’ in Ref. 11, where the authors also obser
that the filament of a sufficiently viscous fluid can pinch o
at interior points, rather than near its ends. We explore
possibility in Sec. V, both experimentally and theoretical
Using the results of the linearized stability analysis from S
IV, we propose a criterion to determine whether a giv
filament, created by a falling liquid drop, will pinch off firs
near its ends, or at one or more interior points. For all of o
experimental data, this criterion correctly predicts whethe
given filament pinches off first near its ends or at poin
within its interior.

II. THE UNPERTURBED FLOW

We consider axisymmetric motions of an incompressi
fluid in a constant gravitational field. The Navier–Stok
equations have the form:18

] r~ru !1r ]zw50, ~2!

] tu1u] ru1w]zu1
1

r
] rp5nS ] r S 1

r
] r~ru ! D1]z

2uD , ~3!

] tw1u] rw1w]zw1
1

r
]zp5nS 1

r
] r~r ] rw!1]z

2wD2g, ~4!

wherer denotes the density of the fluid,n is its kinematic
viscosity, (u,w) are velocity components in the (r ,z) direc-
tions, respectively, andg is the strength of the gravitationa
field. Note that theg vector points in the (2z) direction. At
the center of the filament, wherer 50, we require

u50, ] rw50, ~5!

for all (z,t). The outer boundary of the filament is a fre
surface, which we denote byr 5h(z,t). The kinematic
boundary condition onr 5h(z,t) is

] th1w]zh5u. ~6!

Requiring that the stress vanish onr 5h(z,t) imposes two
more conditions:

1

r
p5

2n

$11~]zh!2%
@] ru1~]zw!~]zh!22~] rw1]zu!

3~]zh!#1
s

r F 1

h$11~]zh!2%1/22
]z

2h

$11~]zh!2%3/2G
1

1

r
pamb, ~7!

and

n@~] ru2]zw!~]zh!1 1
2~] rw1]zu!$12~]zh!2%#50, ~8!

where s is the coefficient of surface tension,pamb is the
pressure of the ambient fluid, and$u, w, p, and their deriva-
tives% are evaluated atr 5h(z,t).

Figure 1 suggests that after the primary filament h
formed and before it has started to pinch off, it evolves
that

] th,0, ]zh50.
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Before pinch-off, wedefinethe primary filament to be the
portion of the falling liquid with these properties. It is easy
find solutions to ~2!–~8! with these properties. Lett5t
1t* . Then

w0~r ,z,t !5
z1z0

t
2

g

2
t,

u0~r ,z,t !52
r

2t
,

~9!

h~z,t !5h0~t!5
H

At
,

1

r
p0~r ,z,t !5

3

8

h0
2~t!2r 2

t2 2
n

t
1

s

rh0~t!
1

1

r
pamb,

where (t* ,H,z0) are arbitrary constants. The reader c
verify directly that this is an exact solution of the Navier
Stokes equations for a fluid with a free surface atr
5h0(t). For a physical solution, we requireH.0, t* .0.
The solution works equally well for a viscous~n.0! or in-
viscid ~n50! fluid, with or without surface tension~s!, with
or without gravity~g!.

With g50, ~9! describes the motion of a liquid filamen
that is uniformly extending in thez direction. This special
case was previously discovered by Frankel and Weihs,16,17

who used it to describe the extensional flow of a sha
charge.

The solution in~9! with g.0 has a simple interpreta
tion: it describes the free fall of a liquid filament in a unifor
gravitational field. To see this, denote the Lagrangian co
dinates of a particular fluid particle by$r (t),z(t)%. One
finds the motion of this fluid particle by solving two ordina
differential equations:

dz

dt
5w05

z1z0

t
2

g

2
t,

dr

dt
5u052

r

2t
.

The result is

z~t,j!52
g

2
t21jt2z0 , ~10a!

r ~t,z!5
z

At
, ~10b!

wherej, z are constants. Equation~10a! is the familiar for-
mula for the position of a particle that is falling in a unifor
gravitational field. The constant of integration,j, can be in-
terpreted as the vertical velocity of the particle att50.

Equation~10b! also has a simple interpretation. All o
the fluid particles in Fig. 1 began their motion at the flu
source. The particles lower in the filament are further fro
the source, so they have been falling longer and are fal
faster than those above. Therefore]zw.0, as one confirms
directly from ~9!. Conservation of mass requires that the fi
ment balance this vertical stretching by contracting radia
This radial contraction accounts for the time depende
seen in both~10b! and ~1!.

Thus, the solution in~9! and ~1! has a simple explana
tion: free fall. We show next that it describes the observ
Downloaded 03 Apr 2001 to 146.186.131.81. Redistribution subje
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motion of actual filaments. To test~1!, we conducted severa
experiments like that shown in Fig. 1, using a variety
liquids. The experimental apparatus was described in de
in Ref. 5; additional information can be found in Append
A. In each experiment we measured the thickness, 2h, of the
liquid filament at a fixedz location as a function of time. The
constants$H,t* % for that experiment were determined b
applying ~1! to two points in the resulting time series.~See
Appendix A for more detail.! For each experiment, we use
data for the time interval over which~1! applies ~i.e., for
which ]zh50 in that experiment!. We show experimentally
in Sec. V that this time interval increases with increasi
viscosity of the fluid.

Figure 2 shows the results for eight experiments,
which we varied not only the fluid properties~viscosity and
surface tension!, but also the external parameters of the e
periment ~flow rate and orifice size!. The parameters for
these experiments are listed in Table I in Appendix A. T
data are graphed withhAt1t* as a function oft, to deter-
mine whether the data for each experiment lie on a horiz
tal line, as predicted by~1!. They do, with noticeable oscil
lations. The horizontal lines shown in Fig. 2 correspond
the best value ofH for the particular experiment. Thus, Fig
2 shows that for a wide range of fluid and experimental
rameters, there are values of$H,t* % such that~1! models
well the radial contraction of falling liquid filaments. In th
experiments shown in Fig. 2, the radius of the filament ty
cally contracted by a factor of more than 2 during the tim
interval shown, so Rayleigh’s model of a uniform jet cann
describe these filaments. On the other hand, these data d
exclude the possibility of some other model in which t
radius of the filament also contracts, like that in Ref. 19.

Note that the data in each experiment in Fig. 2 exhi
small oscillations about the value ofH for that experiment.
This might be evidence of fluid instability, which we discu
in Sec. III.

Before doing so, we mention a variation on~1! and ~9!.
For t,T, the Navier–Stokes equations also admit a solut
in which

h~ t !5
K

AT2t
;

the other variables in~9! are unchanged if we reinterpret:t
5t2T in ~9!. This solution is as robust as that in~9!: it
applies for either a viscous or inviscid fluid, with or withou
surface tension, with or without gravity. In~9!, the filament
stretches vertically as it falls; here the filament contracts v
tically and grows radially. The solution in~9! describes the
motion of the filament before it pinches off. It is tempting
speculate that this second solution might describe the mo
of the filament after it pinches off, as it contracts into one
more droplets@i.e., in frames~e! and~f! of Fig. 1#. Unfortu-
nately, we have no experimental evidence to support
speculation.

III. STABILITY OF AN INVISCID LIQUID FILAMENT

The viscosity of the fluid does not affect the veloci
fields in ~9!, but it affects the stability of the solution. In thi
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. The quantityhAt1t* vs t for
eight experiments. Fluid viscosities
surface tensions, flow rates, and orific
sizes are listed in Table I of Appendix
A. Symbols represent measuremen
The horizontal lines represents the va
ues ofH. ~Values of$H,t* % for each
experiment are given in Table III of
Appendix A.! ~a! Fluid A1; ~b! fluid
A2; ~c! fluid B1 ~circle!, fluid B2
~square!, fluid B3 ~triangle!; ~d! fluid
C; ~e! fluid D; ~f! fluid E.
in

a

d

re
in-

co-
section, we analyze the linearized stability of~9! for an in-
viscid fluid. The first step is to perturb around the solution
~9!, substitute into~2!–~7! with n50, and keep only linear
terms in the perturbed variables. The result is a set of line
ized equations for the perturbed variables,$u1(r ,z,t),
w1(r ,z,t),p1(r ,z,t),h1(z,t)%. For example, the linearize
forms of ~3! and ~4! are ~for 0,r ,h0(t)!

] tu12
r

2t
] ru12

u1

2t
1S z1z0

t
2

g

2
t D ]zu11

1

r
] rp150,

~11a!

] tw12
r

2t
] rw11

w1

t
1S z1z0

t
2

g

2
t D ]zw11

1

r
]zp150.

~11b!

Define the vorticity of the linearized flow:
Downloaded 03 Apr 2001 to 146.186.131.81. Redistribution subje
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v1ª] rw12]zu1 . ~12!

It follows from ~11a! and ~11b! that

]tv12
r

2t
] rv11S z1z0

t
2

g

2
t D ]zv11

v1

2t
50. ~13!

The governing equations for this linearized flow a
more complicated than those for many stability analyses,
cluding those of Rayleigh’s jet, because of the variable
efficients in ~11! and ~13!. Some of this difficulty can be
overcome by changing variables. Let$r ,z,t%→$z,j,t% ac-
cording to

z5rAt, j5
z1z0

t
1

g

2
t, ~14!
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Downloaded
TABLE I. Fluid and experimental parameters.

Fluid
Viscosity
~cm2/s!

Density
~g/cm3!

Sur ten
~dyn/cm!

Flow rate
~s/drop!

Flow rate
~ml/s!

Orifice radius
~cm!

A1 0.75 0.968 36.7 90.8 1.09E23 0.192
A2 0.79 0.968 36.7 2.9 1.86E22 0.192
B1 0.98 0.928 21.5 30.5 5.3E24 0.176
B2 1.02 0.928 21.5 34.1 5.0E24 0.192
B3 0.96 0.928 21.5 30.4 6.06E24 0.216
C 2.13 0.968 22.0 30.3 5.3E24 0.192
D 4.93 0.966 21.7 26.6 6.83E24 0.216
E 10.97 0.955 22.0 29.5 6.39E24 0.216
n
pe
6
a
ea
1
in

n

ta
on

ci
I

d

,

-

r

ber.

ve

ic
qua-
so

ized

e
e
n-

r

so that

]z5
1

t
]j , ] r5At]z ,

]t→
r

2At
]z1S 2

z1z0

t2 1
g

2D ]j1]t .

Comparing~14! with ~10! shows that the new variables ca
be interpreted as Lagrangian-like coordinates of the un
turbed flow. This identification was first made in Ref. 1
Moreover, the effect of gravity disappears when the line
ized equations are written in these variables, and the lin
ized equations here become identical with those in Ref.
Hence we may simply state the main points of the result
analysis.

In terms of the variables in~14!, the solution of~13! is

v1~z,j,t!5At0

t
v1~z,j,t0!. ~15!

If the fluid starts from rest, as it does in the experime
shown in Fig. 1, then its vorticity vanishes initially~i.e., at
t5t0!, and ~15! guarantees that the motion remains irro
tional for t>t0 . We now assume that the linearized moti
of the inviscid fluid isirrotational, so v1[0. Then the lin-
earized velocities can be represented in terms of a velo
potential, which satisfies a form of Laplace’s equation.
follows that for an infinitely long filament, the velocity fiel
has the form

u1~z,j,t!5E
0

`

I 1S mz

t3/2D @A~m,t!cos~mj!

1B~m,t!sin~mj!#dm, ~16a!

w1~z,j,t!52E
0

`

I 0S mz

t3/2D @A~m,t!sin~mj!

2B~m,t!cos~mj!#dm. ~16b!

The free surface is given by

h1~j,t!5
1

At
E

0

`

@C~m,t!sin~mj!

1D~m,t!cos~mj!#dm; ~17!

and there is a corresponding representationp1(z,j,t). In
~16! and ~17!, $A,B,C,D% are functions to be determined
 03 Apr 2001 to 146.186.131.81. Redistribution subje
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.
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-
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and $I 0(x),I 1(x)% are modified Bessel functions. The fila
ment is unstable ifh1(j,t) grows relative toh0(t). Because
of the form of~17!, the filament is unstable if eitherC(m,t)
or D(m,t) grows with t. The governing equation fo
C(m,t) turns out to be

d

dt SAt
I 0~x!

I 1~x!

dC

dt D2Fst3/2

rH3 ~12x2!2
3

4t2GxAtC50,

~18!

where

x5
mH

t3/2 ~19!

is a dimensionless, time-dependent, axial wave num
D(m,t) also satisfies~18!. Therefore, for each fixedm, ~18!
determines the stability/instability of the corresponding wa
mode, for an invisicid fluid.

Comment:An equation equivalent to~18! was first de-
rived in Ref. 16, without the restriction to axisymmetr
modes. Those authors showed from their more general e
tion that only the axisymmetric modes can be unstable,
~18! contains all of the unstable modes ifg50. It is not
difficult to show that their conclusion also holds ifg.0, and
that the analysis presented here captures all the linear
instabilities of~9!.

Comment:The analysis leading to~18! assumed that the
filament is infinitely long. For a filament of finite length, th
integrals in ~16! and ~17! should be replaced by discret
sums, andm should be restricted to a countable set of no
negative values. These changes do not affect~18!, which
applies to each relevant mode~m!.

Note that if t.0 and m.0, then x.0 and
(AtI 0(x)/I 1(x)).0. Therefore~18! has the standard form
of a Sturm–Liouville equation.20 In this form, it is easy to
identify the stable and unstable modes:~18! necessarily has a
growing ~i.e., unstable! solution if

Fst3/2

rH3 ~12x2!2
3

4t2G.0. ~20!

Conversely, neither solution of~18! can grow in t if the
quantity in~20! is strictly negative. This is the condition fo
the filament to be linearly stable.
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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These inequalities provide the criteria for the linear s
bility of an inviscid liquid filament as it falls. Equation
~18!–~20! are the main results of this section, so we no
examine them in detail.

~1! The gravitational constant,g, does not appear in
~18!. Thus, the flow in~9! is a result of gravity, but the
inviscid stability of that flow does not depend on gravity.

~2! We may write~20! in terms of a conventional wav
number, as follows. Letk5m/t; then k is an ordinary, di-
mensional wave number of a spatial oscillation in thez di-
rection. From~19! and ~9!,

x5
mH

t3/2 5kh0~t!. ~21a!

Therefore, the set of linearly unstable wave numbers fo
falling filament of an inviscid fluid is given by~20!, or
equivalently by

12~kh0!22
3

4

r~h0!3

st2 .0. ~21b!

Note that~21b! can only hold for (kh0) small enough, so this
is a long-wave instability, like Rayleigh’s instability for
uniform jet.

~3! We may compare the results for a falling invisc
filament to Rayleigh’s13 results for an inviscid jet of~con-
stant! radiusa. Rayleigh found that a jet is always unstab
with a set of unstable wave numbers given by

12~ka!2.0. ~22!

Thus, the results for an inviscid falling filament differ from
those for an inviscid jet in three ways.

~i! The constant radius of the jet~a! must be replaced by
the time-dependent radius of the filament@h0(t)#.

~ii ! The constant growth rate of the instability of the j
must be replaced by the variable growth rate of the insta
ity of the filament, obtained by integrating~18!.

~iii ! An extra term in ~21b!, 3
4@r(h0)3/st2#, has no

counterpart in~22!. This term arises from the radial pressu
gradient of the falling filament, which makes the filame
more stable than a jet of the same liquid and the same~in-
stantaneous! radius.

~4! A consequence of the additional term in~21b! is that
a filament of sufficiently large radius is linearly stable: th
occurs if

3

4

r~h0!3

st2 .1. ~23!

As t increases,h0(t) decreases, so eventually~23! fails;
every filament becomes unstable eventually. Even so, s
filaments enjoy a time interval of stability, whereas unifor
liquid jets are always unstable.

~5! In Ref. 13, Rayleigh introduced the concept of t
‘‘most unstable wave number.’’ This is the wave number
the fastest growing wave mode, so it is the wave number
one is liable to observe in an experiment. For a falling liqu
filament,~18! is time dependent, so the ‘‘most unstable wa
number’’ changes in time. Thus, the process by which a f
ing liquid filament ‘‘selects’’ a particular wave number
Downloaded 03 Apr 2001 to 146.186.131.81. Redistribution subje
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more complicated than it is for a liquid jet. This point wa
emphasized by Frankel and Weihs,16 who integrated an
equation equivalent to~18! numerically.

IV. STABILITY OF A VISCOUS LIQUID FILAMENT

The linearized stability analysis for a viscous liquid
more complicated than that for an inviscid liquid. We car
this analysis to completion only for a ‘‘very viscous’’ liquid
which is defined precisely in~35!. In this limit, the main
result is that the set of unstable wave numbers is given
~43!. The growth of these unstable modes can be found
integrating~40! numerically. In Sec. V, we use these resu
to predict whether a given filament pinches off first near
ends or in the interior of the filament.

A similar analysis was given in Ref. 17. Those autho
did not restrict their attention to ‘‘very viscous’’ liquids, s
their results are less explicit than those obtained here.

A. The linearized equations

In terms of the variables defined in~14!, the linearized
equations for the evolution of the perturbed quantities w
n.0 are as follows.

For 0,z,H,

]z~zu1!1t23/2z]jw150, ~24a!

]tu12
u1

2t
1

At

r
]zp15ntS ]z

2u11
1

z
]zu12

u1

z2D
1

n

t2 ]j
2u1 , ~24b!

]tw11
w1

t
1

1

rt
]jp15ntS ]z

2w11
1

z
]zw1D1

n

t2 ]j
2w1 ,

~24c!

at z50,

u150, ]zw150, ~24d!

at z5H,

]th11
h1

2t
5u1uz5H , ~24e!

1

r
p1uz5H5

3

4

Hh1

t5/22
s

r

th1

H2 2
s

rt2 ]j
2h1

12nAt]zu1uz5H , ~24f!

nF2
3

t2 ]jh11At]zw11
1

t
]ju1G50. ~24g!

Again, note that the gravitational constant$g% does not ap-
pear in~24!, so $g% does not affect the linear stability of th
system.

The vorticity equation follows from~24b! and ~24c!:

]tv11
v1

2t
5ntS ]z

2v11
1

z
]zv12

v1

z2 D1
n

t2 ]j
2v1 . ~25!

For a viscous liquid~n.0!, this is a partial differential equa
tion, so it needs boundary conditions. They are as follow
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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~i! The vorticity should be bounded for allj.
~ii ! From ~24d!, v1 vanishes atz50.
~iii ! From ~24e! and ~24g!, one shows that

v1uz5H522]tS 1

t
]jh1D . ~26!

The vorticity equation,~25!, is essentially a diffusion
equation; its solution decays in time. Even so,~26! shows
that motion of the free surface can createnewvorticity at this
surface. The competition between these two processes~i.e.,
creation and decay of vorticity! determines the strength o
the rotational velocity field. Thus, the velocity field in th
viscous problem consists of three parts:

~1! an irrotational velocity field, analogous to that in th
inviscid problem;

~2! a rotational velocity field, generated by theoriginal vor-
ticity distribution of the fluid~at t5t0!, which decays as
t→`;

~3! another rotational velocity field, generated by new v
ticity created at the free surface.

B. Three velocity fields

The irrotational velocity field is identical in form to that
in ~16!. It is one part of the velocity field in the viscou
problem.

Because~25! is a diffusion equation, theoriginal vortic-
ity decays in time. The corresponding velocity fields a
decay in time. Moreover, this part of the velocity field cr
ates no new instabilities, beyond those already seen in
III. Therefore, to simplify the analysis as much as possib
we nowassumethat the original velocity field isirrotational,
so the original vorticity vanishes~at t5t0!. Then it follows
that this~second! part of the velocity field also vanishes, fo
t>t0.

Finally, consider the vorticitygeneratedby motion of
the free surface, according to~26!. This vorticity satisfies a
nonhomogeneous equation, with the forcing occurring at
free boundary. One way to find this vorticity is to find sol
tions of the homogeneous problem, then to use variation
parameters to build a Green’s function of the nonhomo
neous problem~e.g., see Chap. 8 of Ref. 21!. Here we simply
list the main ingredients in this construction, and the fin
result. First, represent the right-hand side of~26! by

22]tS 1

t
]jh1D5

1

At
E

0

`

@P~m,t!cos~mj!

1Q~m,t!sin~mj!#dm. ~27!

With h1(j,t) represented as in~17!, the relations between
the coefficients are

P~m,t!

At
522m]t~t23/2C~m,t!!,

~28!
Q~m,t!

At
512m]t~t23/2D~m,t!!.
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-

c.
,

e

of
-

l

We now assume that initially, at t5t0 , P(m,t0)50
5Q(m,t0), and we use this fact in Appendix B. Then ma
use of the identity~p. 111 of Ref. 22!,

z

H
5 (

k51

`
2

nkHJ2~nkH !
J1~nkz!, 0<z,H, ~29a!

where$nkH% denote the zeroes ofJ1(x),

J1~nkH !50, k51,2,3,..., ~29b!

so n1H53.832...,n2H57.016..., etc. The final result is tha
for 0<z,H, the vorticity generated at the free surface h
the form

vg~z,j,t!52
1

At
(
k51

`
2

nkHJ2~nkH !
J1~nkz!

3E
0

`

@R~m,nk ,t!cos~mj!

1S~m,nk ,t!sin~mj!#dm, ~30a!

where

R5expS nm2

t D E
t0

t

expS nnk
2~s22t2!

2 D
3]sS P~m,s!expH 2

nm2

s J Dds2P~m,t!. ~30b!

S5expS nm2

t D E
t0

t

expS nnk
2~s22t2!

2 D
3]sS Q~m,s!expS 2

nm2

s D Dds2Q~m,t!. ~30c!

Verifying that vg(z,j,t) satisfies~26! is delicate. The
representation in~29! is discontinuous atz5H, and this dif-
ficulty also appears in~30!. Therefore, one must show tha
vg(z,j,t) satisfies~26! in the limit asz→H. To do so, use
~30b! and ~30c! to replaceR(m,nk ,t) and S(m,nk ,t) in
~30a! each by two terms, one integral and one nonintegral
each case, the exponential factor in the integral terms ma
that sum~overnk! well behaved, so that these sums are co
tinuous atz5H. Therefore, one can simply evaluate them
z5H, where they vanish becauseJ1(nkH)50 by ~29b!. The
two sums that remain are discontinuous atz5H, but these
two sums~overnk! each decouple from the integral~overm!.
For these sums, using~29a! allows one to evaluate the limi
(z→H) easily, and to show thatvg(z,j,t) satisfies~26! as
z→H.

Verifying that vg(z,j,t) satisfies~25! for 0,z,H is
even more delicate, because formal differentiation inside
sum in ~30a! leads to divergent series. One way to reso
this difficulty is to show thatvg(z,j,t) is a weak solution of
~25!. Equivalently, one can establish conventions tointerpret
particular divergent sums. The following conventions ar
by formally differentiating~29a! twice:

15 (
k51

`
1

J2~nkH !
J0~nkz!, 0<z,H, ~31a!
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05 (
k51

`
nk

J2~nkH !
J1~nkz!, 0<z,H. ~31b!

We reiterate that these are conventions; the sums in~31! may
diverge.

By direct calculation from~30!,

]tR~m,nk ,t!1nS tnk
21

m2

t2 DR52ntnk
2P~m,t!,

~32!

]tS~m,nk ,t!1nS tnk
21

m2

t2 DS52ntnk
2Q~m,t!.

Using ~32! and ~31b!, one can verify by differentiating
within the sum and within the integral thatvg(z,j,t) satis-
fies ~25!, at least formally. It is evident thatvg(z,j,t) van-
ishes atz50, and that it is bounded for allj, for suitable
$P,Q%. This completes the verification thatvg(z,j,t) is a
suitable representation of the forced vorticity field.

The corresponding velocity fields are

u1
g~z,j,t!5At(

k51

`
2

nkHJ2~nkH !
J1~nkz!

3E
0

`F m

m21nk
2t3G @R~m,nk ,t!sin~mj!

2S~m,nk ,t!cos~mj!#dm,
~33!

w1
g~z,j,t!5t2(

k51

`
2

nkHJ2~nkH !
J0~nkz!

3E
0

`F nk

m21nk
2t3G @R~m,nk ,t!cos~mj!

1S~m,nk ,t!sin~mj!#dm.

For a viscous filament with no initial vorticity, the comple
velocity field is the sum of those in~16! and ~33!.

C. Conditions at the free surface

One condition at the free surface results from elimin
ing the pressure between~24c! and ~24f!, both evaluated a
z5H:

1

rt
]jp15ntS ]z

2w11
1

z
]zw1D1

n

t2 ]j
2w12

1

t
]t~tw1!,

~34!
1

rt
]jp1uz5H5S 3H

4t7/22
s

rH2D ]jh12
s

rt3 ]j
3h1

1
2n

At
]j]zu1uz5H .

Two other conditions are shown in~24e! and ~24g!. These
conditions are not independent, because~24e! and ~24g!
were already used to derive~26!. In what follows, we use
~34! and ~24e!, but not~24g!.

The next step is to substitute the representations for
velocity fields from~16!, and~33!, plus the representation fo
the free surface from~17!, into the conditions atz5H, in
order to obtain evolution equations for the unknown fun
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tions $A(m,t),B(m,t),C(m,t),D(m,t),P(m,t),Q(m,t)%.
These equations, along with~28!, determine the motion of a
viscous liquid filament.

We omit the equations obtained in this way, which a
linear but complicated integro-differential equations for t
unknown functions listed above. Equations corresponding
these can be found in Ref. 17. In order to simplify the ana
sis, we now make an additional assumption.

D. Assumption: The liquid is very viscous

Recall thatR(m,nk ,t) and S(m,nk ,t) are defined in
~30!. We show in Appendix B that for large viscosity~n→`!
andt.t0 ,

R~m,nk ,t!→2
nk

2t3

m21nk
2t3 P~m,t!,

~35!

S~m,nk ,t!→2
nk

2t3

m21nk
2t3 Q~m,t!.

In terms of the differential equations in~32!, ~35! asserts that
the homogeneous solutions of~32! decay much faster than
the time scale on which the forcing terms,P(m,t) and
Q(m,t), evolve. This rapid decay occurs in a very visco
fluid. We now define a ‘‘very viscous fluid’’ to be one fo
which ~35! holds.

This assumption simplifies the representation of the
locity field generated by the motion of the free surfac
u1

g(z,j,t) andw1
g(z,j,t). It also reduces the system of lin

earized equations from third order in time to second order
terms ofx from ~19! and (nkH) from ~29b!, define

q~x!ª2(
k51

`
x2

x21~nkH !2 . ~36!

In addition, recall one more identity~Ref. 23, p. 361!:

J0~nkH !1J2~nkH !50.

Using all of these plus~35! in ~33! leads to limiting values
~asz→H! of the quantities that appear in the boundary co
ditions at the free surface:

u1
g~z,j,t!→0,

w1
g~z,j,t!→ H

t E
0

` q8~x!

2x
@P~m,t!cos~mj!

1Q~m,t!sin~mj!#dm,
~37!

]z]ju1
g~z,j,t!→

At

2H E
0

`

xq8~x!@P~m,t!cos~mj!

1Q~m,t!sin~mj!#dm,

ntS ]z
2w1

g1
1

z
]zw1

gD1
n

t2 ]j
2w1

g

→ n

H E
0

`

@21q~x!#@P~m,t!cos~mj!

1Q~m,t!sin~mj!#dm.
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The last of these makes use of the~counterintuitive! limit of
~31a! asz→H.

E. Linear stability

Finally, substitute@~16!, ~17!, and ~37!# into ~34! and
into ~24e!. The result is two identical sets of ordinary diffe
ential equations, one for$(B(m,t),C(m,t),P(m,t)%, and
the other for$(A(m,t),D(m,t),2Q(m,t)%. The first set is

n

H
~21q~x!!P2

H

t
]tS q8~x!

2x
PD2

1

t
]t~tI 0~x!B!

5S 3

4t5/22
st

rH3 ~12x2! DxC1
n

H
xq8~x!P

1
2nt

H2 x2I 18~x!B,

~38!
]tC5AtI 1~x!B.

This set of equations, along with~28!, determine the
linearized stability of a very viscous filament. To analy
this system, it is convenient to rewrite it as a second-or
differential equation forC(m,t). In addition, we eliminate
q~x! by using an identity derived in Appendix C:

q~x!5x
I 0~x!

I 1~x!
22. ~39!

The final result, after some algebra, is

a
]2C

]t2 1
b

t

]C

]t
2

G

t2 C50, ~40!

wherex is defined in~19!, and

a~x!5S xI 0~x!

I 1~x! D 2

2S xI 0~x!

I 1~x! D2x2, ~41a!

bS x,
nm2

t D53S xI 0~x!

I 1~x! D 3

27S xI 0~x!

I 1~x! D 2

14S xI 0~x!

I 1~x! D
23x2S xI 0~x!

I 1~x! D14x21S 2nm2

t D
3F S xI 0~x!

I 1~x! D 2

2x221G , ~41b!

GS x,
sm2At

rH
,
nm2

t D 5
sm2At

rH
~12x2!1

3nm2

t
a~x!

1
3

4 F6S xI 0~x!

I 1~x! D 3

216S xI 0~x!

I 1~x! D 2

18S xI 0~x!

I 1~x! D
26x2S xI 0~x!

I 1~x! D19x2G . ~41c!

A filament of a very viscous liquid is unstable if~40! has any
solutions that grow in time.

Alternatively, we may write~40! in Sturm–Liouville
form:
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]

]t FtD
]C

]t G2
DG

at
C50, ~42!

where

DS x,
nm2

t
,t D5expS E tS b2a

at Ddt D .

Observe thatD is exponential with a real-valued exponen
so D.0, and ~42! is indeed in Sturm–Liouville form. In
Appendix D, we show thata~x!.0 for x>0. Therefore~42!,
and ~40!, have a nonoscillatory growing solution, and th
filament is unstable, if

GS x,
sm2At

rH
,
nm2

t D .0, ~43!

whereG is given in ~41c!. This is the criterion for unstable
wave numbers for a very viscous filament; it is one of t
two main results in this section.

For which dimensionless wave numbers~x! is G.0? In
~41c!, the first term on the right-hand side represents
effect of surface tension; it is positive for 0,x,1. The sec-
ond term represents the effect of viscosity; becausea~x!.0
for all x.0, this term is always positive. We show in Ap
pendix D that the last term in~41c! is positive for 0,x,X
~X'2!. Thus, every filament is unstable in a very visco
liquid, because the set of unstable wave numbers always
cludes 0,x,1, and it may include more.

F. Growth rates of unstable modes

To compute actual rates of growth of unstable mod
one must integrate~40! or ~42!. To aid in that integration, we
show in Appendix D that

a~x!.0 for x.0, ~44a!

a~x!→2 as x→0, ~44b!

bS x,
nm2

t D2a~x!.0 for x.0,
nm2

t
>0, ~44c!

bS x,
nm2

t D2a~x!→2 as x→0, m→0. ~44d!

In addition, recall that~40! or ~42! applies only for a
very viscous liquid. For wave numberm.0, the viscosity~n!
of the liquid appears in bothb andG, so each of these coef
ficients is asymptotically large. We show next that in t
‘‘very viscous’’ limit, ~40! approximately splits into two
first-order equations, which we solve approximately. L
m@1 denote a large dimensionless parameter represen
the viscosity of the filament, e.g.,m5nm2/t. For a very
viscous liquid andm.0, it follows from ~41! that

a5O~1!, b5O~m!, G5O~m!. ~45!

Then ~40! has a fast-changing solution,Cf(m,t), with

Cf5O~1!,
]Cf

]t
5O~m!,

]2Cf

]t2 5O~m2!.

For this solution,~40! becomes approximately
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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a
]2Cf

]t2 1
b

t

]Cf

]t
;0,

so that

Cf~m,t!;Cf~m,t0!expS 2E
t0

t b

at
dt D . ~46!

From ~44!, $b/at%.1, so this solution decays, relatively fas
The other solution of~40!, Cs(m,t), changes slowly:

Cs5O~1!,
]Cs

]t
5O~1!,

]2Cs

]t2 5O~1!.

For this solution,~40! becomes approximately

b

t

]Cs

]t
2

G

t2 Cs;0,

so that

Cs~m,t!;Cs~m,t0!expS E
t0

t G

bt
dt D . ~47!

If ~43! holds for a particularm.0, thenCs(m,t) grows with
t, relatively slowly. This is the unstable mode for thism.

Both b andG depend ont, so the unstable modes do n
exhibit simple exponential growth. The instantaneous gro
rate of an unstable mode is given by

G5
G

bt
, ~48!

and it changes with time. Moreover, the ‘‘most unstab
wave number’’@i.e., the wave numberm that maximizes the
growth rate in~48! at fixed t#, changes with time; this is
another difference between a falling liquid filament and
uniform jet. Figure 3 shows graphs of instantaneous gro

FIG. 3. The instantaneous growth rate for unstable modes for fluid A1, f
Eq. ~48!, The growth rate~G! is plotted as a function of wave number~m!
for various times during the interval in whichdh/dz50. A dot ~d! marks
the most unstable mode at each time.
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rate~G! vs wave number~m!, plotted at various times, usin
the parameters that correspond to the experiment in Fig
Please note the following points.

~1! At each time, there is a most unstable wave num
~m!, shown with a dot~d! in Fig. 3. As time increases, thi
maximal wave number increases, even over the fraction
second during which the filament survives.

~2! The ‘‘wave number’’ m has dimensions of~time/
length! instead of~1/length!. The corresponding wavelengt
is given byl52pt/m. Therefore, if the maximalm remains
constant in time, its corresponding wavelength grows~lin-
early! in time. If the maximalm grows slower than linearly,
then the most unstable wavelength also changes in ti
Typically, the instability of a falling liquid filament doesnot
generate disturbances of constant wavelength.

~3! Some of the curves in Fig. 3 have rather bro
maxima, so near each maximal wave number is a rang
other wave numbers with growth rates nearly as large as
maximal value. In an experiment, therefore, this instability
likely to select a band of nearly maximal wave numbe
instead of just one.

~4! The band of wave numbers with instantaneo
growth rates near the maximum becomes more broad as
increases. The value of the maximal growth rate itself d
not change significantly with time.

To summarize this section, the linearized stability of
very viscous liquid filament is now completely explicit. He
are the main results. The set of unstable wave number
defined by~43!. For each unstable wave number, the grow
of the unstable mode is approximately given by~47!. For a
given filament, a graph like that in Fig. 3 shows which wa
numbers grow most rapidly, and how their instantaneo
growth rates change with time. A particular liquid filame
qualifies as ‘‘very viscous’’ if the time scale of growth i
~47! is slow in comparison with the time scale of decay
~32!.

In Sec. V, we use these results to predict whether a gi
liquid filament pinches off first near its ends, like the fil
ment in Fig. 1, or if it pinches off in its interior.

V. WHERE DOES A FILAMENT PINCH OFF?

The filament in Fig. 1 pinches off near its ends~first at
the bottom of the filament, then at the top!. This behavior is
commonly observed in experiments.2–5,11 It is called ‘‘end-
pinching’’ in Ref. 11, and it occurs in filaments that form
either because of gravity, as in our Fig. 1 and in Refs. 2–5
without gravity.11 However, not all filaments pinch off firs
near their ends, as noted in Ref. 11 for filaments and dr
created without gravity in a four-roll mill. Figure 4 shows th
results of an experiment like that in Fig. 1, but for a mo
viscous fluid. ~This experiment uses fluid E, described
Table I.! Several differences appear in the motion of the
two filaments.

~1! More viscous filaments survive longer.~This can al-
ready be inferred from Fig. 2.! As a result, the experiment in
Fig. 4 lasts longer than that in Fig. 1.

~2! Because it lasts longer~in time!, the filament in Fig.
4 grows to a much longer length than that in Fig. 1. As
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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result, we are unable to show the entire filament in Fig.
except during the first two frames.

~3! The primary filament in Fig. 1 maintains a relative
uniform radius~so dh/dz'0! while its ends neck down an
then pinch off. By comparison, Fig. 4~d! shows that in this
experiment the primary filament exhibits spatial variatio
~so dh/dzÞ0! while the end of the filament near the orific
~i.e., at the top of the figure! does not change its shape a
preciably. Similarly, we observed no necking down of t
filament at its drop-end~although this cannot be confirme
from Fig. 4!.

~4! A significant difference between the filaments
Figs. 1 and 4 is that the filament in Fig. 4 pinches off
several points interior to the filament, whereas the filamen
Fig. 1 pinches off near its ends. The objective of this fin
section is to provide a criterion to predict which of the
possibilities will occur for a given filament.

All of the fluids depicted in Fig. 2 are ‘‘very viscous,’
according to~35!. Thus using the analysis of Sec. IV, w
now propose a criterion to determine whether a given fi
ment pinches off near its ends or at interior points. As
example, consider the filament in Fig. 1. For this filame
Fig. 3 shows the instantaneous growth rates of disturban
of various wave numbers. However, Fig. 3 is based on
simplifying assumption that the filament is infinitely lon
For a filament of finite length, like that shown in Fig. 1, on
some of these wave numbers are allowed, because only s
of them correspond to wavelengths that fit into the fin
length of the filament. Here is our criterion.

For a given filament, if the most unstable wave mode
the longest wavelength that fits into the finite length of
filament, then that filament pinches off first near its ends
the most unstable wave mode has a wavelength tha
shorter than the length of the filament, then the filam
pinches off at one or more interior points.

Below are some comments and disclaimers that are
quired in using this criterion, followed by a detailed outlin

FIG. 4. Images of the drop and filament for fluid E, using a spatial res
tion of 95.5mm/pixel and a temporal resolution is 4000 fps. Image size
0.4532.27 cm2. Times of images~referenced to times shown in Figs. 2 an
5! are ~a! 20.1072 s;~b! 20.0107 s;~c! 0.0216 s;~d! 0.0883 s;~e! 0.0933
s; ~f! 0.0966 s;~g! 0.0980 s.
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of how it applies for the eight experiments shown in Fig.
~1! We assume here that there is no external forci

which can artificially excite a wave mode other than the m
unstable mode.

~2! For a falling liquid filament, both the length of th
filament and the wavelength of a given mode change w
time. Therefore, some work is required to determine whet
the ~changing! wavelength of a particular mode fits into th
~changing! length of the filament. That determination
made explicit in the outline that follows.

~3! We apply this criterion only at early times. The lin
earized stability analysis in Sec. IV is valid only for sma
disturbances, so its validity ceases well before the filam
actually pinches off.

~4! In practice, as described in the following, we app
the criterion only over the time interval that begins when t
primary filament first forms~i.e., when a region forms with
]h/]z50!, and ends when we observe significant spa
variations on the primary filament~i.e., when ]h/]zÞ0!.
This is the same time interval used for Fig. 2.

Figure 5 shows how the criterion applies for the eig
experiments discussed in Fig. 2.

~a! For each experiment, we find the most unsta
wave number,m, at the initial time~t50, whent5t* !. The
corresponding wavelength isl52pt/m52pt* /m. This is
the most unstable wavelength, initially. If this waveleng
exceeds the measured length of the primary filament at
5t* , then we choose the wavelength equal to the filam
length, and find the corresponding value ofm. ~These values
of m are listed in Table III, in Appendix A.! The shape of the
curves in Fig. 3 guarantees that this is the most unsta
wave number for a filament of this length.

~b! Holding m constant, the wavelength of this mod
grows linearly in time, according tol52pt/m. Each solid
line in Fig. 5 represents the~changing! wavelength of the
mode that was the most unstable mode that fit into the fi
ment att50.

~c! Also shown in Fig. 5 are the lengths of the prima
filament, measured during the interval in which]h/]z50 for
that experiment. These time intervals differed for differe
experiments, as Fig. 5 shows.

~d! For the first six experiments shown in Fig. 5@i.e.,
5~a!–5~f!, corresponding to fluids A1, A2, B1, B2, B3, C#,
the wavelength of the~initially ! most unstable mode eithe
exceeds or equals the length of the primary filament dur
the relevant time interval. According to the above-given c
terion, these filaments should pinch off at their ends first, a
they did. For each of the last two experiments@i.e., Figs. 5~g!
and 5~h!, corresponding to fluids D and E#, the most unstable
wavelength fit inside the length of the primary filament. T
above-mentioned criterion predicts that these two filame
should pinch off at points internal to the filament~instead of
near the ends!, and they did.

~e! The filaments of fluids A, B, and C all pinched o
first near their ends, as predicted. The contracting filame
of A1, A2, B1, and B2 remained stable after pinch-off a
each resulted in one satellite drop. The contracting filam
of fluid B3 showed some nonuniformity, but the nascent
stability did not grow, and one satellite drop was forme

-
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FIG. 5. Filament length vs time for the
eight experiments of Fig. 2, listed in
Table I. Circles denote measuremen
of filament length. Lines denote the
changing wavelength of the mode tha
was most unstable and that fit into th
filament length att50. ~a! Fluid A1;
~b! fluid A2; ~c! fluid B1; ~d! fluid B2;
~e! fluid B3; ~f! fluid C; ~g! fluid D; ~h!
fluid E.
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The contracting filament of fluid C exhibited instabilities th
grew substantially, causing the filament to break up into s
eral satellite drops.

For all of our experimental data, therefore, this criteri
successfully predicts whether a filament pinches off first n
its ends or at internal points. To our knowledge, this is
first theoretical prediction of this behavior.
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APPENDIX A: EXPERIMENTAL APPARATUS,
MATERIALS, AND PROCEDURES

The experimental apparatus comprised silicone and c
mercial vegetable oils, Lucite reservoirs, and an imaging s
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tem. Table I lists the fluid properties~viscosity, surface ten-
sion, density! as well as the experimental parameters~flow
rate and orifice size!.

Fluids B, C, D, and E were silicone oils~Dow Corning!
chosen for their ranges of viscosities from about 100 to 1
times more viscous than water. The surface tension of th
oils did not vary significantly. Fluid A was a commerci
vegetable oil~Weis brand!, with a surface tension that varie
significantly from that of the silicone oils. Viscosities we
measured in a temperature-controlled bath; see Ref. 5
details of fluids A and B. Surface tension was measured w
a DuNouy tensiometer at room temperature. Experiments
and A2 used the same fluid with different flow rates. Expe
ments B1–B3 used the same fluid with different orifice siz
The flow rates were measured as an average over se
drops.

For a given experiment, the oil was poured into a res
voir and left open to the atmosphere. It dripped from
orifice under gravity at a rate controlled by a needle val
The orifice was machined to have a flat edge so that the
coated the surface area between the inner and outer e
The radius of the outer edge is listed in Table I. The dim
sions of the overall apparatus are given in Ref. 5. The ap
ratus was enclosed in a plastic box that was not tempera
controlled but stopped air-currents and external contam
tion.

A Kodak EktaPro 1012 EM Motion Analyzer capture
images of the falling drop with spatial and temporal reso
tions listed in Table II.

Illumination was obtained using silhouette photograp
following Ref. 24, with a 600 W lamp, an experiment
grade one-way transparent mirror~Edmund Scientific,
A40,047! and reflective screen material~Scotchlite 3M
7615!. The mirror, placed between the camera and drop,
oriented at a 45° angle to the camera’s face. Approxima
50% of the incident light was reflected toward the drop. T
reflective material, placed directly behind the drop, reflec
the incoming light rays back toward the drop. The effect
this setup was to render the drop as a shadow. The refle
material, rated as 98% efficient, sends back the light wit
an angle of 0.5° of its initial path,24 resulting in less scatter
ing of light around the edges of the imaged drops an
higher-contrast image.

Images were visible on a monitor and down-loaded
video, to hard copy, and/or to a computer. Measurement

TABLE II. Spatial and temporal resolution for each experiment shown
Fig. 2.

Fluid
Spatial resolution

~mm pixel!
Temporal resolution

~frame/s!

A1 110 3000
A2 111 3000
B1 33.6 3000
B2 25.6 3000
B3 33.6 3000
C 39.6 6000
D 63.7 3000
E 42.1 3000
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filament widths and filament lengths were obtained direc
from the monitor, from the hard copies and/or using Photo
dobe on the computer for image enhancement and edge
tection. Comparisons among the different techniques did
show significant variability.

Measurements for filament width and length were o
tained as follows. First, for all fluids, the experiment w
imaged with a coarse resolution so that the entire drop
visible until pinch-off. From this global view, referenc
points were obtained. In particular, we noted the location
the drop when we first judged a filament with]h/]z50 to
have formed. Then we noted the interval of time that pas
while the drop fell from this location until we first observe
either necking at the ends of the filament~for fluids A, B,
and C or wavelike instabilities on the filament~for fluids D
and E!. Measurements of filament width for fluid A wer
obtained from this global view during this time-interval.

Second, measurements of length were obtained from
time series by placing the reticule from the imager onto
filament boundary and measuring the length under it
which ]h/]z50. These measurements are accurate to wit
60.01 cm.

Third, we zoomed-in the imager to obtain highe
resolution for measurements of filament width, for all flui
except C. The resolutions are listed in Table II. In the
images a portion of the filament was in the image, but neit
the orifice nor the drop was in the image during measu
ments. The position of the image was known relative to
orifice and to the reference location obtained from the glo
view. We waited a known~small! amount of time after the
drop passed this location. Then this time was defined to
t50 in the corresponding measurements of filament wid
~Filament lengths are also referenced to this time.! Measure-
ments were taken during the time interval over whi
dh/dz50, determined from the global view.

To obtain values ofH andt* from the measurements o
filament width, we calculated (H,t* ) from every possible
combination of two data points. Then we considered the
ror ~in a least-squares sense! between the calculated value
of H and the corresponding values ofhAt. We considered
the values of (H,t* ) that provided the smallest error, th
values obtained as an average over some small error, an
the end, we chose the values that, by eye, showed the
agreement with the entire set of data points. These value
H correspond to the horizontal lines in Fig. 2 and are lis
along with t* in Table III. They could have changed b
about65% each. This variation did not effect the results
the stability calculations. The results of these calculations
also listed in Table III. In particular, we list the values of th
wave number,m, that had the maximum growth rate@from
Eq. ~48!# at timet50. For fluids~A, B!, this occurred at the
longest wavelength that fit into the filament at that time;
fluids ~C, D, E!, it occurred at the peak of the curve corr
sponding to that shown in Fig. 3.

Finally, here are two comments about our observatio
First, because of inadequate spatial and temporal resolu
we were unable to measure modal amplitudes as a func
of time. Instead, we measured wavelengths that were obs
able at various times and at various spatial resolutions.
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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found that when we observed the filaments with a coa
resolution, we could not resolve the short wavelengths; w
we observed with a fine resolution, we could not resolve
long wavelengths. For example, when viewing experimen
at t50.17 s, with a fine resolution that allowed only a po
tion of the filament into the image, we observed waveleng
of about 0.6 cm. The image size was such that we could
also observe wavelengths larger than about 1 cm. The
plitudes were essentially 1 pixel. Thus, when viewing t
filament at a coarser resolution, we could not resolve th
amplitudes and would not observe those modes. Inst
when viewing the filament at a coarse resolution that allow
the whole filament-drop combination into the image, we o
served waves with lengths of about 3 cm. They also h
amplitudes of about 1 pixel.~We note that the most unstab
wavelength att5t* gives a wavelength att50.17 of 4.2
cm.! Presumably, fluids such as D and E, for which pinch-
occurs within the filament, admit many unstable modes
at present we cannot observe their evolutions.

Second, we also note that previous work2,5 showed that
pinch-off occurred in a secondary filament localized at
end of the filament near the drop. Reference 2 observed
same structure at the orifice, while Ref. 5 did not observ
for fluid B2. It was conjectured in Ref. 5 that this differen
was due to the difference in orifice sizes, since that of Re
was significantly larger than that in Ref. 5. Our observatio
support this conjecture: when we used the same fluid wi
larger orifice~in experiment B3!, the secondary filament did
form.

APPENDIX B: LIMITING BEHAVIOR OF R„m,n k ,t…

R(m,nk ,t) and S(m,nk ,t) are defined in~30!. In this
appendix we show thatR(m,nk ,t) satisfies~35! for large
viscosity~n→`!, and thatR(m,nk ,t)→0 for small viscosity
~n→0!. The behavior ofS(m,nk ,t) is similar. In what fol-
lows, we assume that bothP(m,t) and ]tP(m,t) have
bounds that are independent ofn.

Define

f~s!52nnk
2~t22s2!/21nm2~t212s21!.

so that

]sf5nFnk
2s1

m2

s2 G.0 for 0,s,`,

TABLE III. Measured values of$H,t* % and corresponding calculations o
the most unstable wave numberm at t5t* .

Fluid
H

@cm* ~s!1/2#
t*
~s!

m(t50)
~s/cm!

A1 0.0058 0.0069 0.124
A2 0.0061 0.0089 0.118
B1 0.0018 0.0045 0.130
B2 0.0021 0.0043 0.094
B3 0.0025 0.0070 0.180
C 0.0020 0.0048 0.099
D 0.0019 0.0083 0.148
E 0.0028 0.0211 0.253
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f~t!50 at s5t.

Then ~30b! can be written as

R~m,nk ,t!5E
t0

t

ef~s!]sP~m,s!ds

1E
t0

t

ef~s!
nm2

s2 P~m,s!ds2P~m,t!,

5R11R22P.

But

R25E
t0

t

ef~s!]sfS m2/s2

nk
2s1m2/s2D P~m,s!ds

5ef~s!S m2/s2

nk
2s1m2/s2D P~m,s!ut0

t

2E
t0

t

ef~s!]sF m2/s2

nk
2s1m2/s2 P~m,s!Gds,

5S m2

nk
2t31m2D P~m,t!

2E
t0

t

ef~s!]sF m2/s2

nk
2s1m2/s2 P~m,s!Gds,

where we have usedP(m,t0)50 andf~t!50. Therefore,

R~m,nk ,t!52S nk
2t3

nk
2t31m2D P~m,t!

1E
t0

t

ef~s!]sF nk
2s

nk
2s1m2/s2 P~m,s!Gds.

In the last integral, both the quantity in square brackets
its derivative have bounds that are independent ofn, so the
integral vanishes asn→` by Watson’s Lemma.25 This leads
to ~35!.

To evaluateR(m,nk ,t) asn→0, expandf(s) in a Tay-
lor series in powers ofn, and integrate term by term. The firs
integral cancels (2P(m,t)), and the other integrals vanis
asn→0. BecauseR(m,nk ,t) andS(m,nk ,t) both vanish as
n→0, one can show that the theory for a viscous fluid rep
duces that of an inviscid fluid asn→0.

APPENDIX C: BOUNDS ON q„x… and on I0„x…ÕI1„x…

Lemma 1:With q~x! defined in~36!,

q~0!50, q8~0!50,

q~x!.0 if x.0, q8~x!.0 if x.0;

q~x!,x if x.0.

Proof: It follows from ~36! that

q8~x!54x(
k51

`
~nkH !2

@x21~nkH !2#2 . ~C1!
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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For k>1, kp,nkH. Therefore the series forq~x! con-
verges, as does that forq8~x!. Then it follows from their
series thatq~0!505q8~0!, and thatq~x!.0, U8~x!.0 for
x.0. To establish an upper bound onq~x! for x.0, observe
that

q~x!52x2(
k51

`
1

x21~nkH !2,2x2(
k51

`
1

x21~kp!2 ,

so

q~x!,2x2E
0

` dk

x21~kp!2 5
2x

p E
0

` dy

11y2 5x.

Remark:Lemma 2 is due to Bernard Deconinck.
Lemma 2:

q~x!5x
I 0~x!

I 1~x!
22.

Proof: The Bessel functionJ1(Y) can be written in terms o
an infinite product:26

J1~Y!5
Y

2 )
k51

` S 12
Y2

~nkH !2D ,

where J1(nkH)50. Taking logarithms and differentiatin
yields

ln J1~Y!5 ln Y2 ln 21 (
k51

`

lnS 12
Y2

~nkH !2D ,

so

J18~Y!

J1~Y!
5

1

Y
2 (

k51

`
2Y/~nkH !2

12Y2/~nkH !2

5
1

Y
2

2

Y (
k51

`
Y2

~nkH !22Y2 . ~C2!

But I 1(x)52 iJ1( ix) for x>0 ~Ref. 23, p. 375!. Set Y
5 ix in ~C2!:

I 18~x!

I 1~x!
5

1

x
1

2

x (
k51

`
x2

~nkH !21x2 5
1

x
1

q~x!

x
. ~C3!

From Ref. 22,

d

dx
@xI 1~x!#5xI 0~x!,

d

dx
I 0~x!5I 1~x!, ~C4!

ThereforeI 18(x)/I 1(x)5I 0(x)/I 1(x)21/x. Substituting this
into ~C3! yields Lemma 2.

Lemma 3: I0(x)/I 1(x) has the following properties.

~ i!
I 0~x!

I 1~x!
5

2

x F11
1

2 S x

2D 2

2
1

12S x

2D 4

1O~x6!G
asx→0,

~ ii !
I 0~x!

I 1~x!
511

1

2x
1

3

2 S 1

2x D 2

1O~x23!]

asx→`,
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~ iii !
d

dx S I 0

I 1
D512S I 0

I 1
D 2

1
1

x S I 0

I 1
D for 0,x,`.

Proof: Both I 0(x) and I 1(x) have convergent Taylo
series expansions nearx50.22,23The representation in~i! fol-
lows from these. Similarly, both functions have asympto
expansions asx→`, and~ii ! follows from these. The differ-
ential equation in~iii ! follows from those in~C4!.

Lemma 4:

I 0~x!

I 1~x!
.

1

2x
1A 1

~2x!2 11 for 0,x,`.

Proof: Define

y~x!ª
1

2x
1A 1

~2x!2 11,

so

12y21
y

x
50. ~C5!

Lemma 4 asserts thatI 0(x)/I 1(x).y(x) for 0,x,`. The
assertion is valid asx→0 by ~i! of Lemma 3, so we mus
prove that it remains valid forx.0. The proof is by contra-
diction. Assume that there existsX* , 0,X* ,`, such that
at x5X* ,

I 0~X* !/I 1~X* !5y~X* !. ~C6!

If ~C6! occurs more than once, then letX* be the smallest
positive value at which~C6! is valid. Comparing~iii ! of
Lemma 3 with~C5! shows that

d

dx S I 0

I 1
D50 at x5X* . ~C7!

But I 0(x)/I 1(x).y(x) for x,X* , soI 0(x)/I 1(x) must
intersecty(x) from aboveat x5X* , andy(x) is a decreas-
ing function, so ifI 0(x)/I 1(x) intersectsy(x) from above at
x5X* , then necessarily

d

dx S I 0

I 1
D,0 at x5X* .

This contradicts~C7!, so there can be no such pointX* , and
Lemma 4 holds for allx.0.

APPENDIX D: THE COEFFICIENTS IN „41…

Lemma 5:a~x!.0 for 0,x,`.
Proof: From ~41a!,

a~x!5S xI 0

I 1
D F S xI 0

I 1
D21G2x2. ~D1!

From Lemma 4,

S xI 0

I 1
D21.

1

2
1A1

4
1x221.0 for x.0.

Using Lemma 4 again shows that forx.0,

a~x!.@ 1
21A 1

41x2#•@2 1
21A 1

41x2#2x2. ~D2!
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The right-hand side of~D2! is identically zero, so this estab
lishes Lemma 5.

Lemma 6:As x→0, a~x!→2.
Proof: Use ~41a! and ~i! of Lemma 3.
Lemma 7:With b(x,nm2/t) anda~x! defined in~41!,

bS x,
nm2

t D2a~x!.0 for x.0,
nm2

t
>0.

Proof: From ~41!, we may write

b2a5T1~x!1S 2nm2

t D F S xI 0

I 1
D2x221G , ~D3!

where

T1~x!53S xI 0

I 1
D 3

28S xI 0

I 1
D 2

15S xI 0

I 1
D23x2S xI 0

I 1
D

15x2.

From Lemma 4, forx.0,

F S xI 0

I 1
D2x221G.F S 1

2
1A1

4
1x2D 2

2x221G
5@A 1

41x22 1
2#.0.

Meanwhile,T1(x) can be factored:

T1~x!5F3S xI 0

I 1
D25GF S xI 0

I 1
D 2

2S xI 0

I 1
D2x2G . ~D4!

Comparing with~D1! shows that the second factor in~D4! is
a~x!, so by Lemmas 5 and 6 it is positive forx>0.

To show that the first factor in~D4! is positive, define

T2~x!5S xI 0

I 1
D2

5

3
.

It follows from ~i! of Lemma 3 that asx→0, T2(x)
→1/3.0. We need to show thatT3(x).0 for all x.0. Use
~iii ! of Lemma 3, plus algebra, to show that

dT2

dx
5x1

5

9x
2

~T2!2

x
2

4~T2!

3x
. ~D5!

Now mimic the proof of Lemma 4. Assume that there exi
X* , with 0,X* ,`, such that atx5X* ,

T2~X* !50. ~D6!

If ~D6! occurs more than once, then letX* be the smallest
positive value at which~D6! is valid. At x5X* , dT2 /dx
.0 from ~D6!. But T2(x).0 for x,X* , so this plus~D6!
assures that

dT2

dx
<0 at x5X* .
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This is a contradiction, so there can be no such pointX* .
ThereforeT2(x).0 for all x>0. Therefore both factors in
~D4! are positive forx>0, so T1(x).0. Therefore both
terms in ~D3! are positive forx.0, nm2/t>0. This com-
pletes the proof.

Lemma 8:As x→0 andm→0, b2a→2.
Proof: This follows from ~D3!, ~D4!, and ~i! of

Lemma 3.
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