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When a liquid drop falls from a fluid source with a slow flow rate, it remains attached to the source
by an elongating liquid filament until the filament pinches off. For many fluids, this pinch-off occurs
first near the end of the filament, where the filament joins to the liquid drop. For other fluids, the
filament pinches off at one or more interior points. In this paper, we study the motion of this
filament, and we make two points. First, the flow in this filamemidsthat of a uniform jet. Instead,

we show experimentally that a different solution of the Navier—Stokes equations describes the
motion of this filament before it pinches off. Second, we propose a criterion for the location of the
first pinch-off. In particular, we analyze the linearized stability of the exact solution, both for an
inviscid fluid and for a very viscous fluid. Our criterion for pinch-off is based on this stability
analysis. It correctly predicts whether a given filament pinches off first near its ends or at points
within its interior for all of our experimental data. @000 American Institute of Physics.
[S1070-663(00)02403-X]

I. INTRODUCTION AND MAIN RESULTS Fig. 1, which we call the “primary filament,” as it falls
under gravity. Our objective is to describe the motion of this
Anyone who has had a leaky water faucet is familiarfalling liquid filament, including: (i) its time-dependent
with the phenomenon of falling liquid drops. A slow flow shape and dynamic§i) its instabilities; andiii ) whether the
rate causes a drop to grow to a critical size, after which ifilament pinches off near its ends or at interior points.
falls under the force of gravity; then the process repeats. A nearby but different problem, on the stability of a
High-speed imaging now permits observation of this processiniform liquid jet, was studied long ago by Platédu,
with a level of detail that was formerly unavailable. The Rayleigh'®'*and Chandrasekha? People often identify the
sequence of images in Fig. 1 exhibits the detailed process fgrrimary filament of a falling drop with a uniform jet, and an
a particular liquid. As Fig. 1 shows, the drop starts to fallinstability on the primary filament is sometimes described in
from the fluid source. As the drop falls, it remains connectedhe literature as a “Rayleigh instability.” The starting point
to the source by a long, straight liquid filament. This filamentof our analysis is to deny this identification, because a uni-
grows thinner and longer, until eventually it pinches off, firstform liquid jet and a falling liquid filament are different. This
at the bottom and then at the top of the filament. After pinch-can be seen in at least two ways.
ing off, the elongated filament contracts vertically. Depend-  (a) The axial velocity of a uniform liquid jet is uniform
ing on parameter values, the filament may exhibit spatialn both time and space. The axial velocity of a falling liquid
oscillations before it pinches off, and it may contract into onefilament cannot be uniform in time, because it accelerates in
satellite droplet(as in Fig. 2 or into more than one after a uniform gravitational field. It is not uniform in space either.
pinching off. As we discuss in detail in the following, this (b) As Fig. 1 shows, the radius of the falling filament
sequence of events is typical for mafiyut not al) fluids. decreases as the filament grows in length, before pinching
The process of drop formation, with or without gravity, off; the radius of a uniform jet is uniform in time. The two
has been the subject of a great deal of recent reséatth. motions are different, and neither is a limit of the other.
Inspired in part by the results in Ref. 1, most of these papers In Sec. I, we derive an exact solution of the Navier—
have focused on the detailed structure of the pinch-off. ThiStokes equations, in which the radius of the filament de-
paper focuses instead on the motion of the filament visible irtreases in time according to
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filament, rather than somewhere in the middle. This is called
“end-pinching” in Ref. 11, where the authors also observe
that the filament of a sufficiently viscous fluid can pinch off
at interior points, rather than near its ends. We explore this
possibility in Sec. V, both experimentally and theoretically.
Using the results of the linearized stability analysis from Sec.
IV, we propose a criterion to determine whether a given
filament, created by a falling liquid drop, will pinch off first
near its ends, or at one or more interior points. For all of our
experimental data, this criterion correctly predicts whether a
3 - : = e given filament pinches off first near its ends or at points
(a) (b) (© (d) (e) U] (9 within its interior.

FIG. 1. Evolution of a drop from its formation through the formation of a

satellite drop. The resolution is 93&m/pixel. The size of each image is [|. THE UNPERTURBED FLOW
0.588x<2.22 cnf. The times of the image@eferenced to times shown in

Figs. 2 and pare:(a) —0.0486 s(b) 0.0097 s(c) 0.0167 s{d) 0.0214 s(e) We consider axisymmetric motions of an incompressible
0.0274 s,(f) 0.0330 s,(g) 0.0443 s. The kinematic viscosity) is 0.75  fi,ig in a constant gravitational field. The Navier—Stokes

cné/s. This experiment used fluid Al in Table (Figure reprinted with . rlﬁ
permission of the Physics of Fluidls equations have the fornt:

a,(ru)+ra,w=0, i)

+42u

)

. . . 1 1
where{H,t*} are arbitrary constants. This form of solution g,u+ug,u+wd,u+ —a,p= ,,( r9r(—t9r(fu)
is quite robust: it applies as the filament elongates, for either p r

a viscous or inviscid liquid, with or without surface tension, 1 1
with or without gravity. It is a simple generalization of a dw+ud,w+wd,w+ —azp=v(—&r(rarw)+agw) -g, 4
solution found by Frankel and Weilfs'” in a very different P '

context. In Sec. I, we show experimentally tliat describes wherep denotes the density of the fluid, is its kinematic
the behavior of a falling liquid filament until it starts to pinch viscosity, ,w) are velocity components in the,g) direc-
off. The solution applies to the filament as it appears beforetions, respectively, and is the strength of the gravitational
during, and a short while after Fig(d). In Fig. 1(c), the field. Note that they vector points in the { z) direction. At
filament has already started necking near the drop. The cothe center of the filament, where=0, we require
responding velocity and pressure fields are also given in Sec.

I u=0, J,w=0, (5)
The motion associated wittl) is subject to the same for all (z,t). The outer boundary of the filament is a free

kind of instability that affects a uniform liquid jet. In Sec. lll, surface, which we denote by=h(z1t). The kinematic

we analyze the linearized stability of a falling filament of an boundary condition om=h(z,t) is

inviscid liquid, before it pinches off. The analysis is similar ah+wd,h=u. (6)

to that done by Rayleidfi for an inviscid liquid jet. Our o _ _
results turn out to be identical to those of Frankel andRequiring that the stress vanish or:h(z,t) imposes two
Weihs!® Moreover, the results for a falling filament compare more conditions:
nicely with those of Rayleighi for a uniform jet. One differ- 1 20
ence is that every uniform inviscid jet is unstable, but some —p=+————5[d,u+ (I W)(d,h)>—(d,w+ 3,u)
C T ) p {1+(9;h)}
falling inviscid filaments are linearly stable.

In Sec. IV, we analyze the linear stability of a falling o 1 agh
filament of a viscous liquid, again before pinch-off. As in the (d;h)] o N1+ (5,MB (14 (9,mF%?
inviscid case, our basic analysis is similar to that of Frankel
and Weihs}” and it results in a complicated set of integro- 1
differential equations. For aery viscous liquid we show + ,_,pamb' (@)

that these integro-differential equations reduce to ordinary
differential equations, which can be analyzed in complet(—_""m
detail. For a very viscous liquid, every falling filament is v[(d,u—d,w)(d,h) + 3(d,w+ d,u){1—(9,h)2]=0, (8)

unstable. where o is the coefficient of surface tensio is the
A surprising consequence of the two stability analyses in 7 Pamb

Secs. Il and 1V is that some falling liquid filaments are pressure of the ambient fluid, ad w, p, and their deriva-

- . . . tives are evaluated at=h(z,t).
destabilizedby making the fluid more viscous. Fioure 1 sugaests that after the primary filament has
The filament shown in Fig. 1 pinches off first near its 'gul u9g primary: I

ends, where it connects to the falling drop at its bottom an E;Ted and before it has started to pinch off, it evolves so
to the fluid source at its top. In most of the experiments
known to us2—>*!pinch-off occurs first near the ends of the ~ ;h<0, 4J,h=0.
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Before pinch-off, wedefinethe primary filament to be the motion of actual filaments. To te&t), we conducted several
portion of the falling liquid with these properties. It is easy to experiments like that shown in Fig. 1, using a variety of

find solutions to(2)—(8) with these properties. Let=t liquids. The experimental apparatus was described in detail
+t*. Then in Ref. 5; additional information can be found in Appendix
A. In each experiment we measured the thicknehs,d? the
z+z5 ¢ S . . . .
Wo(r,z,t) = —57 liquid filament at a fixed location as a function of time. The

constants{H,t*} for that experiment were determined by
r applying (1) to two points in the resulting time seriegSee
Ug(r,z,t)=— 27 Appendix A for more detai). For each experiment, we used
) data for the time interval over whiclil) applies(i.e., for
H which d,h=0 in that experiment We show experimentally
h(z,t)=ho(7)= N in Sec. V that this time interval increases with increasing
T viscosity of the fluid.
3 hS(r)—rZ v o 1 Figure 2 shows the results for eight experiments, in
—Po(r,z,t)=% v -t + — Pamb which we varied not only the fluid properti¢giscosity and
P 8 7 7 pho(7) p :
surface tension but also the external parameters of the ex-
where (*,H,zp) are arbitrary constants. The reader canperiment (flow rate and orifice size The parameters for
verify direCtIy that this is an exact solution of the Navier— these experimentg are listed in Table | in Appendix A. The
Stokes equations for a fluid with a free surface rat data are graphed with\t+t* as a function ot, to deter-
=ho(7). For a physical solution, we requit¢>0, t*>0.  mine whether the data for each experiment lie on a horizon-
The solution works equally well for a viscos>0) or in-  ta] line, as predicted byl). They do, with noticeable oscil-
viscid (v=0) fluid, with or without surface tensiofw), with |ations. The horizontal lines shown in Fig. 2 correspond to
or without gravity(g). the best value oH for the particular experiment. Thus, Fig.
With g=0, (9) describes the motion of a liquid filament 2 shows that for a wide range of fluid and experimental pa-
that is Uniformly eXtending in the direction. This SpeCial rameters, there are values ﬁ-ﬂ,t*} such that(l) models
case was previously discovered by Frankel and WEfS, el the radial contraction of falling liquid filaments. In the
who used it to describe the extensional flow of a shapegxperiments shown in Fig. 2, the radius of the filament typi-
charge. cally contracted by a factor of more than 2 during the time
The solution in(9) with g>0 has a simple interpreta- interval shown, so Rayleigh’s model of a uniform jet cannot
tion: it describes the free fall of a |IQUId filament in a uniform describe these filaments. On the other hand1 these data do not
gravitational field. To see this, denote the Lagrangian coorexclude the possibility of some other model in which the
dinates of a particular fluid particle bjr(7),z(7)}. One  radius of the filament also contracts, like that in Ref. 19.
finds the motion of this fluid particle by solving two ordinary Note that the data in each experiment in Fig. 2 exhibit

differential equations: small oscillations about the value bf for that experiment.
dz z+7, g dr r This might be evidence of fluid instability, which we discuss
d—T=W0= . —ET, E’ZUOZ_Z. in Sec. Il
_ Before doing so, we mention a variation @) and (9).
The result is Fort<T, the Navier—Stokes equations also admit a solution
9 in which
aﬂa=—§#+&—%, (109 K
h(t)= =
¢ VT—t

r(r,{)=—, (10b
\/;
where¢, { are constants. Equatidd0ag is the familiar for-
mula for the position of a particle that is falling in a uniform
gravitational field. The constant of integratiaf),can be in-
terpreted as the vertical velocity of the particleratO.
Equation(10b) also has a simple interpretation. All of
the fluid particles in Fig. 1 began their motion at the fluid
source. The particles lower in the filament are further from
the source, so they have been falling longer and are fallin
fe_xster than those above. 'I'_herefozrzev >0, as one conﬂrm_s nately, we have no experimental evidence to support this
directly from(9). Conservation of mass requires that the f'la'speculation
ment balance this vertical stretching by contracting radially. '
This radial contraction accounts for the time dependenc?“ STABILITY OF AN INVISCID LIQUID FILAMENT
seen in both(10b) and (1). '
Thus, the solution if9) and (1) has a simple explana- The viscosity of the fluid does not affect the velocity
tion: free fall. We show next that it describes the observedields in(9), but it affects the stability of the solution. In this

the other variables ii9) are unchanged if we reinterpret:
=t—T in (9). This solution is as robust as that {8): it
applies for either a viscous or inviscid fluid, with or without
surface tension, with or without gravity. k®), the filament
stretches vertically as it falls; here the filament contracts ver-
tically and grows radially. The solution i®) describes the
motion of the filament before it pinches off. It is tempting to
speculate that this second solution might describe the motion
of the filament after it pinches off, as it contracts into one or
%nore dropletgi.e., in framege) and(f) of Fig. 1]. Unfortu-
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section, we analyze the linearized stability (6§ for an in- w1:=0d,W1— d,U;. (12

viscid fluid. The first step is to perturb around the solution in
(9), substitute inta(2)—(7) with »=0, and keep only linear It follows from (118 and(11b) that
terms in the perturbed variables. The result is a set of linear-
ized equations for the perturbed variablgsy(r,z,7),
wq(r,z,7),p1(r,z,7),h1(z,7)}. For example, the linearized
forms of (3) and (4) are (for 0<<r<hgy(7))

;
27

z+zy ¢
- 57T

2

w3

27

0. (13

(970)17 al’wl+ (7Zwl+

The governing equations for this linearized flow are

Il — o &l — uy N Ztz, g Iolle + }(9 -0 more complicated than those for many stability analyses, in-
12777 27 T 279" p rP1=0 cluding those of Rayleigh’s jet, because of the variable co-
(11a efficients in(11) and (13). Some of this difficulty can be
" w, [z+2, g 1 oveorl_come by changing variables. Lt z, 7} —{{,¢, 7} ac-
&th— Z_arwl‘i‘ 7 + - E T z?zwl-‘r- ;&Zplzo cor Ing to
(11b z+z, ¢
Define the vorticity of the linearized flow: (=T €= T * 27 (14
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TABLE I. Fluid and experimental parameters.

Viscosity Density Sur ten Flow rate Flow rate Orifice radius
Fluid (cnls) (g/en) (dyn/cm) (s/drop (mlfs) (cm)
Al 0.75 0.968 36.7 90.8 1.69-3 0.192
A2 0.79 0.968 36.7 2.9 1.86-2 0.192
B1 0.98 0.928 21.5 30.5 E3-4 0.176
B2 1.02 0.928 215 34.1 -4 0.192
B3 0.96 0.928 21.5 30.4 6.86-4 0.216
C 2.13 0.968 22.0 30.3 E3-4 0.192
D 4.93 0.966 21.7 26.6 6.83-4 0.216
E 10.97 0.955 22.0 29.5 6.H9-4 0.216
so that and{lo(x),11(x)} are modified Bessel functions. The fila-
1 ment is unstable ih{(&,7) grows relative tchg( 7). Because
Jz= ;,95, 9= \/;(941 of the form of(17), the filament is unstable if eith€(m, 7)

or D(m,7) grows with 7. The governing equation for
C(m, ) turns out to be

9, — a+( AR P

L T 27T

2r o2 4 Ll d| [0 3] o
Comparing(14) with (10) shows that the new variables can  dr| ' I(x) dr) | pH® (17X~ 22| N7€=0,
be interpreted as Lagrangian-like coordinates of the unper- (18
turbed flow. This identification was first made in Ref. 16.

Moreover, the effect of gravity disappears when the linearwhere

ized equations are written in these variables, and the linear-

ized equations here become identical with those in Ref. 16. _ mH
Hence we may simply state the main points of the resulting X~ 372 (19
analysis.

In terms of the variables ifl4), the solution of(13)is  is 4 dimensionless, time-dependent, axial wave number.
o D(m,7) also satisfie$18). Therefore, for each fixen, (18)
w1(L, € 7)= \/; w1(L,€,79). (15 determines the stability/instability of the corresponding wave
mode, for an invisicid fluid.

If the fluid starts from rest, as it does in the experiment = Comment:An equation equivalent t¢18) was first de-
shown in Fig. 1, then its vorticity vanishes initiallye., at  rived in Ref. 16, without the restriction to axisymmetric
7=1,), and (15) guarantees that the motion remains irrota-modes. Those authors showed from their more general equa-
tional for 7= 7,. We now assume that the linearized motiontion that only the axisymmetric modes can be unstable, so
of the inviscid fluid isirrotational, so w;=0. Then the lin- (18) contains all of the unstable modesgf=0. It is not
earized velocities can be represented in terms of a velocitgifficult to show that their conclusion also holdsgif>0, and
potential, which satisfies a form of Laplace’s equation. Itthat the analysis presented here captures all the linearized
follows that for an infinitely long filament, the velocity field instabilities of(9).

has the form CommentThe analysis leading t@8) assumed that the
= (me filament is infinitely long. For a filament of finite length, the
U1(§,§,T)=f |1<—3,§>[A(m,1-)cos{m§) integrals in(16) and (17) should be replaced by discrete
o \T sums, andn should be restricted to a countable set of non-
+B(m, 7)sin(mé)]dm, (163 negative values. These changes do not affé8), which
applies to each relevant mode).
* 4 _ Note that if #~~0 and m>0, then x>0 and
Wi(£,6,7)= fo 'O(W)[A(m”)s'“(mf) (V1 o(x)/11(x))>0. Therefore(18) has the standard form
of a Sturm—Liouville equatio? In this form, it is easy to
—B(m,7)cogm¢) Jdm. (16b)  identify the stable and unstable mod&k8) necessarily has a
The free surface is given by growing (i.e., unstablgsolution if
h 1 fw c . o ) 3
1(&,7) 7)o [C(m, 7)sin(m§) W(1—)( )= 22|70 (20)
+D(m,7)cogmé)]dm; (17)

Conversely, neither solution dfLl8) can grow in 7 if the
and there is a corresponding representajq(,&,7). In  quantity in(20) is strictly negative. This is the condition for
(16) and (17), {A,B,C,D} are functions to be determined, the filament to be linearly stable.
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These inequalities provide the criteria for the linear sta-more complicated than it is for a liquid jet. This point was
bility of an inviscid liquid filament as it falls. Equations emphasized by Frankel and Weittswho integrated an
(18)—(20) are the main results of this section, so we nowequation equivalent t18) numerically.
examine them in detalil.

(1) The gravitational constang, does not appear in |v. STABILITY OF A VISCOUS LIQUID FILAMENT
(18). Thus, the flow in(9) is a result of gravity, but the
inviscid stability of that flow does not depend on gravity.

(2) We may write(20) in terms of a conventional wave

The linearized stability analysis for a viscous liquid is
more complicated than that for an inviscid liquid. We carry

number, as follows. Lek=m/r: thenk is an ordinary, di- this analysis to completion only for a “very viscous” liquid,

mensional wave number of a spatial oscillation in thei- which is defined precisely i35). In this limit, the main
rection. From(19) and (9) result is that the set of unstable wave numbers is given by

(43). The growth of these unstable modes can be found by
- - integrating(40) numerically. In Sec. V, we use these results
X= 32~ kho(7). (213 to predict whether a given filament pinches off first near its
. ends or in the interior of the filament.
Therefore, the set of linearly unstable wave numbers for a A gimilar analysis was given in Ref. 17. Those authors
falling filament of an inviscid fluid is given by20), or  giq not restrict their attention to “very viscous” liquids, so
equivalently by their results are less explicit than those obtained here.
3 p(ho)®
>

1—(khg)?— 1 o2 (21b A. The linearized equations
In terms of the variables defined {ii4), the linearized
equations for the evolution of the perturbed quantities with

v>0 are as follows.

Note that(21b) can only hold for khy) small enough, so this
is a long-wave instability, like Rayleigh’s instability for a
uniform jet.
(3) We may compare the results for a falling inviscid For 0<{<H,
filament to Rayleigh’® results for an inviscid jet ofcon- a(Luy)+ 7*3’2§a§w1:0, (249
stan} radiusa. Rayleigh found that a jet is always unstable,
with a set of unstable wave numbers given by up VT ( 2 Ul)
dUp— 2—+ —d/p1=v7| dUrt+ - d U1~ o5
1-(ka)2>0. 22) T 4 4

Thus, the results for an inviscid falling filament differ from + —Vzﬂéul. (24b)
those for an inviscid jet in three ways. T

(i) The constant radius of the j&t) must be replaced by w, 1 1
the time-dependent radius of the filamghg(7)]. I W+ —+ —3dpr= vr( &§w1+ — 9W,q

(i) The constant growth rate of the instability of the jet TP 4
must be replaced by the variable growth rate of the instabil-
ity of the filament, obtained by integratin@s). at {=0,

(i) An extra term in(21b), %[p(h0)3/<r7-2],' has no =0, aw;=0, (240
counterpart in(22). This term arises from the radial pressure
gradient of the falling filament, which makes the filamentat{=H,
more stable than a jet of the same liquid and the séme h,
stantaneoysradius. d,h+ 5,= Ugle= (24¢

(4) A consequence of the additional term(21Lb) is that
a filament of sufficiently large radius is linearly stable: this 1 3Hh; oth;y o

. _ 2
occurs if ;pl|§=H_Z _I_TSZ_FF_Fé’ghl

+ a2
7_2 §W11
(249

3
; p(hOZ) -1 (23) +2V\/;(9£U1|§:H ) (24f)
gT

3 1
As 7 increaseshy(7) decreases, so eventualigd) fails; v = 2 dht VTawq+ —0¢up|=0. (249
every filament becomes unstable eventually. Even so, some
filaments enjoy a time interval of stability, whereas uniformAgain, note that the gravitational constdgt does not ap-
liquid jets are always unstable. pear in(24), so{g} does not affect the linear stability of the
(5 In Ref. 13, Rayleigh introduced the concept of the system.
“most unstable wave number.” This is the wave number of ~ The vorticity equation follows fronf24b) and (240):
the fastest growing wave mode, so it is the wave number that o1 1
one is liable to observe in an experiment. For a falling liquid 9,0+ === vr( a§w1+ — 01— =7
filament,(18) is time dependent, so the “most unstable wave 27 ¢ 4
number” changes in time. Thus, the process by which a fall+or a viscous liquidv>0), this is a partial differential equa-

ing liquid filament “selects” a particular wave number is tion, so it needs boundary conditions. They are as follows.

(&5}

Ty 25
2 £W1- (29
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(i) The vorticity should be bounded for &l We now assumethat initially, at =75, P(m,79)=0
(i) From (24d), w, vanishes at=0. =Q(m,7y), and we use this fact in Appendix B. Then make
(i) From(24e and(24g), one shows that use of the identity(p. 111 of Ref. 22,
20 (1& h ) 26 S
= — —_ p— e — $
o1ls=n | 79 |- (26) H = & el d,(neH) Ji(nd), Os{<H, (2939

The vorticity equation,(25), is essentially a diffusion where{n,H} denote the zeroes df (x),
equation; its solution decays in time. Even $86) shows
that motion of the free surface can creagvvorticity at this Ji(nH) =0, k=1.23,..., (290
surface. The competition between these two proce8ses son,H=3.832....n,H=7.016..., etc. The final result is that
creation and decay of vorticitydetermines the strength of for 0</<H, the vorticity generated at the free surface has
the rotational velocity field. Thus, the velocity field in the the form
viscous problem consists of three parts:

o0

(1) an irrotational velocity field, analogous to that in the W, ET)=——= D, #Jl(nkg)
inviscid problem; V=1 nHJa(nH)
(2) a rotational velocity field, generated by theginal vor- o
ticity distribution of the fluid(at 7= 7y), which decays as X j [R(m,n,,7)cogmé)
T—0; 0
3 a_m_other rotational velocity field, generated by new vor- +S(m,n,, 7)sin(mé)]dm, (309
ticity created at the free surface.
where
B. Three velocity fields om2\ (e vnﬁ(sz— 7_2)
Theirrotational velocity field is identical in form to that R=ex;{ T) JT exp( T)
in (16). It is one part of the velocity field in the viscous 0
problem. vm?
Becausd25) is a diffusion equation, theriginal vortic- X s P(m,s)exp[ - T] ) ds—P(m,7). (30D

ity decays in time. The corresponding velocity fields also
decay in time. Moreover, this part of the velocity field cre- vm?| (r Vﬂi(Sz—Tz)
ates no new instabilities, beyond those already seen in Sec. S= exp< T) JTO ex 2
[ll. Therefore, to simplify the analysis as much as possible,
we nowassumehat the original velocity field igrotational,
so the original vorticity vanishe@t = 75). Then it follows
that this(second part of the velocity field also vanishes, for
T=T(.

Finally, consider the vorticitygeneratedby motion of
the free surface, according t@86). This vorticity satisfies a

nonhomogeneous equation, with the forcing occurring at th ;
g us equation, Wi ng urnng 30b) and (309 to replaceR(m,ny,7) and S(m,n,,7) in

free boundary. One way to find this vorticity is to find solu- 0 h by two t int | and int L
tions of the homogeneous problem, then to use variation 0@ 9 each by two terms, one integral and one nonintegral. In

parameters to build a Green’s function of the nonhomogefhaih case, the exponint;]al fagtor |r;hthteﬂ|1ntegral terms makes
neous problente.g., see Chap. 8 of Ref. RHere we simply i a sum(ov_e|r_|nk2r\r/1ve fe aved, so tha lese slumts ?I_r]e cont-
list the main ingredients in this construction, and the final Inuous atf=H. Therefore, one can simply evaluate them a

result. First, represent the right-hand side(28) by ¢=H, where they vanish becaudg(n,H) =0 by (29b). The
two sums that remain are discontinuous{atH, but these

2

Q(m,s)exp{ _m ))ds—Q(m,r). (300

s s
Verifying that w9({,&,7) satisfies(26) is delicate. The

representation i(29) is discontinuous af=H, and this dif-

ficulty also appears it30). Therefore, one must show that

9(¢,€&,7) satisfies(26) in the limit as{—H. To do so, use

1 1 (= two sums(overn,) each decouple from the integi@verm).
—zaf(;aghl) = —f [P(m,7)cogmé) For these sums, usin@9a allows one to evaluate the limit
JrJo (—H) easily, and to show thab9(Z, £, 1) satisfies(26) as
+Q(m, 7)sin(m¢)]dm. (27 &—H.

Verifying that w9(¢,&,7) satisfies(25) for 0<{<H is
even more delicate, because formal differentiation inside the
sum in (309 leads to divergent series. One way to resolve
this difficulty is to show thatw9(Z, £, 7) is a weak solution of

With hy(¢&,7) represented as iflL7), the relations between
the coefficients are

P(m,7) (25). Equivalently, one can establish conventioniterpret
=—2ma (7~ 3%C(m, 7)), particular divergent sums. The following conventions arise
Jr 28 by formally differentiating(29a twice:
Q(m,7) -

=+2ma. (7 3D (m,7)). 0<{<H, (319

1
12 Ty

\/;

Downloaded 03 Apr 2001 to 146.186.131.81. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 12, No. 3, March 2000

[

=2

k=1

0<{<H. (31b)

Ny 3
JZ( nkH ) 1( nkg) ’
We reiterate that these are conventions; the suni@linmay
diverge.

By direct calculation from(30),
2

2, M 2
d,R(mn,,7)+v Tnk+? R=—wvmnP(m,7),
2 (32
2 m 2
a,S(m,ny,7)+v Tnk+? S=—vmQ(m,7).

Using (32) and (31b), one can verify by differentiating
within the sum and within the integral that®(¢, £, 7) satis-
fies (25), at least formally. It is evident that9(Z,&,7) van-
ishes at{=0, and that it is bounded for al, for suitable
{P,Q}. This completes the verification that®({,£,7) is a
suitable representation of the forced vorticity field.

The corresponding velocity fields are

¢.em= IE . AT, (n ATy 1)

|
0

—S(m,n,,7)cogmé)]dm,
» (33

m
M2t nZ [R(m,ny, 7)sin(m¢)

2
.2
Wg(gagvT) =T & nkH\]Z(nkH) Jo(nkg)

J|
0

+S(m,n,, 7)sin(mé)]dm.

[R(m,ny, 7)cogmé)

2+n2 3
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tions {A(m,7),B(m,7),C(m,7),D(m,7),P(m,7),Q(m,7)}.
These equations, along wit@8), determine the motion of a
viscous liquid filament.

We omit the equations obtained in this way, which are
linear but complicated integro-differential equations for the
unknown functions listed above. Equations corresponding to
these can be found in Ref. 17. In order to simplify the analy-
sis, we now make an additional assumption.

D. Assumption: The liquid is very viscous

Recall thatR(m,n,,7) and S(m,n,,7) are defined in
(30). We show in Appendix B that for large viscosity—»)
and 7> 7,

nZ7>
R(m,nk,r)—>— m+—nk3p(m,7'),
(35
nkT
SN, 7) = = ot 7 Qm. ).

In terms of the differential equations {82), (35) asserts that
the homogeneous solutions (82) decay much faster than
the time scale on which the forcing termB(m,r) and
Q(m,7), evolve. This rapid decay occurs in a very viscous
fluid. We now define a “very viscous fluid” to be one for
which (35) holds.

This assumption simplifies the representation of the ve-
locity field generated by the motion of the free surface,
uf(¢, & 7) andwi({,&,7). It also reduces the system of lin-
earized equations from third order in time to second order. In
terms ofy from (19) and (,H) from (29b), define

2

I x): 22 (36)

T

For a viscous filament with no initial vorticity, the complete In addition, recall one more identitfRef. 23, p. 361

velocity field is the sum of those ifl6) and (33).

C. Conditions at the free surface

Jo(nkH)+J2(nkH):0.
Using all of these plu$35) in (33) leads to limiting values

One condition at the free surface results from eliminat-(@s¢{—H) of the quantities that appear in the boundary con-

ing the pressure betwedB4c) and (24f), both evaluated at
I=H:

1 ) 1 v,

p_7_(9§p1:1/7' 07§W1+ Z(?ng +?&§W1——(3’T(7‘W1),
1 5 3H o ah a 2h (34
o7 §p1|g H= | 2772~ pH deNy— st N1

2v
+ ﬁ&g&(U]_l{:H .

Two other conditions are shown i24¢ and (24g. These
conditions are not independent, becaugde and (249
were already used to deriv@6). In what follows, we use
(34) and (249, but not(249.

The next step is to substitute the representations for the
velocity fields from(16), and(33), plus the representation for

the free surface fronil7), into the conditions at=H, in

order to obtain evolution equations for the unknown func-

H o)
W%(g’ng)H7JO

ditions at the free surface:
uf(¢,&,17—0
9 (x)

[P(m, 7)cogmé)

+Q(m,7)sin(mé)]dm,
(37)

— 51 | X 00IP(m,7cogme)

+Q(m, 7)sin(mé)]dm,

14
2
0”§Wg + ? ﬁgW%

1
VT( Jowd+ 7

- % f:[2+ I(x)J[P(m,7)cogm¢)

+Q(m,7)sin(mé)]dm.
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The last of these makes use of tfe®unterintuitive limit of
(319 as¢—H.

E. Linear stability
Finally, substitute[(16), (17), and (37)] into (34) and

into (24e. The result is two identical sets of ordinary differ-

ential equations, one fof(B(m,7),C(m,7),P(m,7)}, and
the other for{(A(m,7),D(m,7),—Q(m,7)}. The first set is

v H [9'(x) 1
5 (2+000))P——0, TP — —97lo(x)B)

3 oT

o 2
157 pHs(l X°)

14
xC+ gxﬁ’(x)P

2vT -
+t T X 11(x)B,

2,C= 71, (x)B. 39

This set of equations, along witt28), determine the

Henderson et al.

7] (€| AT 42
ar| ™o @ ¢T0 42
where

(o2 o [ 22

Observe thatA is exponential with a real-valued exponent,
so A>0, and (42) is indeed in Sturm-Liouville form. In
Appendix D, we show thai(y)>0 for y=0. Thereforg42),
and (40), have a nonoscillatory growing solution, and the
filament is unstable, if

0'm2 T sz 0
—_— >
pH - )

r (X, (43)
wherel is given in(41¢). This is the criterion for unstable
wave numbers for a very viscous filament; it is one of the
two main results in this section.

For which dimensionless wave numbégs is '>07? In

linearized stability of a very viscous filament. To analyze (419, the first term on the right-hand side represents the
this system, it is convenient to rewrite it as a second-orde@ffect of surface tension; it is positive for(<1. The sec-

differential equation folC(m, 7). In addition, we eliminate
J(x) by using an identity derived in Appendix C:

|
ﬁ(x)=x%—2- (39
The final result, after some algebra, is
#C pBoC T
LYF‘F;E—?CZO, (40)
wherey is defined in(19), and
_ X'o(x))z_(xlo(x))_ )
“(X)_( 0o | oo | 7Y (419
vm? _ X|0(X))3_ )('0()())2 (Xlo()()>
ﬂ(’(' T )‘3( Lo | oo ) P00
B o[ Xlo(X) P (ZVm2>
3 ('1(X) B =
X'o(X))z_ 2
] 1 @1
m? m? m?\/z 3vm?
F(x,”pH - = )=‘TPH (1= )+ = a(y)
3 Xlo()())3
+4[6( 00
B Xlo(X))z (X'o()())
16('1()() ALY
|
o rov] o

A filament of a very viscous liquid is unstable(#0) has any
solutions that grow in time.

Alternatively, we may write(40) in Sturm-Liouville
form:

ond term represents the effect of viscosity; becaugg>0

for all x>0, this term is always positive. We show in Ap-
pendix D that the last term if41¢) is positive for G<y<<X
(X~2). Thus, every filament is unstable in a very viscous
liquid, because the set of unstable wave numbers always in-
cludes B<y<1, and it may include more.

F. Growth rates of unstable modes

To compute actual rates of growth of unstable modes,
one must integratéd0) or (42). To aid in that integration, we
show in Appendix D that

a(x)>0 for x>0, (443

a(x)—2 as xy—0, (44b)
vm? o2

Bl x,—|—a(x)>0 for x>0, ——==0, (449
vm?

,B(X,T) —a(x)—2 as y—0, m—O0. (44d)

In addition, recall that40) or (42) applies only for a
very viscous liquid. For wave number>0, the viscosity(v)
of the liquid appears in botp andI’, so each of these coef-
ficients is asymptotically large. We show next that in the
“very viscous” limit, (40) approximately splits into two
first-order equations, which we solve approximately. Let
pu>1 denote a large dimensionless parameter representing
the viscosity of the filament, e.gu=wvm?/ 7. For a very
viscous liquid andn>0, it follows from (41) that

a=0(1), B=0(un), I'=0(w). (45
Then(40) has a fast-changing solutio@;(m, 7), with
c—om), o ‘92Cf—o 2
1=0(1), e (m), a2 (p9).

For this solution(40) becomes approximately
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' ' T i T " ' " rate (G) vs wave numbe(m), plotted at various times, using
10° 7 the parameters that correspond to the experiment in Fig. 1.
I 353X ] Please note the following points.
0160 | (1) At each time, there is a most unstable wave number

(m), shown with a do{®) in Fig. 3. As time increases, this
maximal wave number increases, even over the fraction of a
second during which the filament survives.

1 (2) The “wave number”m has dimensions oftime/
0130 length instead of(1/length. The corresponding wavelength

; is given byh =27 7/m. Therefore, if the maximah remains
constant in time, its corresponding wavelength gralirs
early) in time. If the maximalm grows slower than linearly,
then the most unstable wavelength also changes in time.
Typically, the instability of a falling liquid filament doesot
generate disturbances of constant wavelength.

0070 ‘00801 .0100 (3) Some of the curves in Fig. 3 have rather broad
L . ' . ' maxima, so near each maximal wave number is a range of
other wave numbers with growth rates nearly as large as the

m(s - cm ™) maximal value. In an experiment, therefore, this instability is
likely to select a band of nearly maximal wave numbers,
FIG. 3. The instantaneous growth rate for unstable modes for fluid AL, fromjnstead of just one.

Eq. (48), The growth ratdG) is plotted as a function of wave number) (4) The band of wave numbers with instantaneous

for various times during the interval in whiahh/dz=0. A dot (®) marks X X

the most unstable mode at each time. growth rates near the maximum becomes more broad as time
increases. The value of the maximal growth rate itself does
not change significantly with time.

To summarize this section, the linearized stability of a

Ge™h

T = .0069

10

0.00 0.05 0.10 0.15 0.20 0.25

#Cs B ICs : T ; -

a——s+——~0, very viscous liquid filament is now completely explicit. Here
IT T o7 are the main results. The set of unstable wave numbers is

so that defined by(43). For each unstable wave number, the growth

of the unstable mode is approximately given (@y). For a
"B i fil h like that in Fig. 3 sh hich
Ci(m,7)~Ci(m,ro)exg — | —dr|. (46  9iven filament, a graph like that in Fig. 3 shows which wave
' ’ T numbers grow most rapidly, and how their instantaneous

growth rates change with time. A particular liquid filament
qualifies as “very viscous” if the time scale of growth in
(47) is slow in comparison with the time scale of decay in
Cs_01 S o1 (32).

or (1), Fra (1. In Sec. V, we use these results to predict whether a given
liquid filament pinches off first near its ends, like the fila-
ment in Fig. 1, or if it pinches off in its interior.

From (44), {Bla7}>1, so this solution decays, relatively fast.
The other solution 0f40), C,(m, ), changes slowly:

2

Cs=0(1),

For this solution(40) becomes approximately

BdCs T C—0

s — —Cs~0,

R V. WHERE DOES A FILAMENT PINCH OFF?
so that

The filament in Fig. 1 pinches off near its endisst at
T the bottom of the filament, then at the jophis behavior is
CS(m,T)~CS(m,TO)exp(f ,B_rdT)' (47 commonly observed in experimerdt& It is called “end-
0 pinching” in Ref. 11, and it occurs in filaments that form
If (43) holds for a particulam>0, thenCy(m, 7) grows with  ejther because of gravity, as in our Fig. 1 and in Refs. 2—5 or
7, relatively slowly. This is the unstable mode for tinis without gravity!! However, not all filaments pinch off first
Both g andI’ depend orr, so the unstable modes do not near their ends, as noted in Ref. 11 for filaments and drops
exhibit simple exponential growth. The instantaneous growtltreated without gravity in a four-roll mill. Figure 4 shows the

rate of an unstable mode is given by results of an experiment like that in Fig. 1, but for a more

T viscous fluid.(This experiment uses fluid E, described in

G=—, (48)  Table I) Several differences appear in the motion of these
BT two filaments.

and it changes with time. Moreover, the “most unstable (1) More viscous filaments survive longémhis can al-
wave number’Ti.e., the wave numben that maximizes the ready be inferred from Fig. RAs a result, the experiment in
growth rate in(48) at fixed 7], changes with time; this is Fig. 4 lasts longer than that in Fig. 1.

another difference between a falling liquid filament and a  (2) Because it lasts longém time), the filament in Fig.
uniform jet. Figure 3 shows graphs of instantaneous growtld grows to a much longer length than that in Fig. 1. As a
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of how it applies for the eight experiments shown in Fig. 2.

(1) We assume here that there is no external forcing,
which can artificially excite a wave mode other than the most
unstable mode.

(2) For a falling liquid filament, both the length of the
filament and the wavelength of a given mode change with
time. Therefore, some work is required to determine whether
the (changing wavelength of a particular mode fits into the
(changing length of the filament. That determination is
made explicit in the outline that follows.

(3) We apply this criterion only at early times. The lin-
earized stability analysis in Sec. IV is valid only for small
disturbances, so its validity ceases well before the filament

: actually pinches off.
(a) (b) () (d) (e) ® (@ (4) In practice, as described in the following, we apply
the criterion only over the time interval that begins when the

FIG. 4. Images of the drop and filament for fluid E, using a spatial resolu- _ . X X . . K
tion of 95.5 um/pixel and a temporal resolution is 4000 fps. Image size is primary filament first formsﬂ.e., when a region forms with

0.45%2.27 cnf. Times of imagesreferenced to times shown in Figs. 2 and dh/dz=0), and ends when we observe significant spatial
5) are(a) —0.1072 sy(b) —0.0107 s;(c) 0.0216 s(d) 0.0883 s;(€) 0.0933  variations on the primary filamer(i.e., whendh/dz+#0).

s: (f) 0.0966 s;(g) 0.0980 s. This is the same time interval used for Fig. 2.
Figure 5 shows how the criterion applies for the eight
experiments discussed in Fig. 2.

result, we are unable to show the entire filament in Fig. 4, (& For each experiment, we find the most unstable
except during the first two frames. wave numberm, at the initial time(t=0, whenr=t*). The

(3) The primary filament in Fig. 1 maintains a relatively corresponding wavelength is=277/m=2=t*/m. This is
uniform radius(sodh/dz~0) while its ends neck down and the most unstable wavelength, initially. If this wavelength
then pinch off. By comparison, Fig(d shows that in this exceeds the measured length of the primary filament at
experiment the primary filament exhibits spatial variations=t*, then we choose the wavelength equal to the filament
(sodh/dz#0) while the end of the filament near the orifice length, and find the corresponding valuenaf(These values
(i.e., at the top of the figuledoes not change its shape ap- of mare listed in Table Ill, in Appendix A.The shape of the
preciably. Similarly, we observed no necking down of thecurves in Fig. 3 guarantees that this is the most unstable
filament at its drop-endalthough this cannot be confirmed wave number for a filament of this length.
from Fig. 4. (b) Holding m constant, the wavelength of this mode

(4) A significant difference between the filaments in grows linearly in time, according th=2=7/m. Each solid
Figs. 1 and 4 is that the filament in Fig. 4 pinches off atline in Fig. 5 represents thechanging wavelength of the
several points interior to the filament, whereas the filament imode that was the most unstable mode that fit into the fila-
Fig. 1 pinches off near its ends. The objective of this finalment att=0.
section is to provide a criterion to predict which of these (c) Also shown in Fig. 5 are the lengths of the primary
possibilities will occur for a given filament. filament, measured during the interval in whigiv 9z= 0 for

All of the fluids depicted in Fig. 2 are “very viscous,” that experiment. These time intervals differed for different
according to(35). Thus using the analysis of Sec. IV, we experiments, as Fig. 5 shows.
now propose a criterion to determine whether a given fila-  (d) For the first six experiments shown in Fig.[Be.,
ment pinches off near its ends or at interior points. As arb(a)—5(f), corresponding to fluids Al, A2, B1, B2, B3,]C
example, consider the filament in Fig. 1. For this filamentthe wavelength of théinitially) most unstable mode either
Fig. 3 shows the instantaneous growth rates of disturbancescceeds or equals the length of the primary filament during
of various wave numbers. However, Fig. 3 is based on th¢he relevant time interval. According to the above-given cri-
simplifying assumption that the filament is infinitely long. terion, these filaments should pinch off at their ends first, and
For a filament of finite length, like that shown in Fig. 1, only they did. For each of the last two experimefits., Figs. %g)
some of these wave numbers are allowed, because only soraad 5h), corresponding to fluids D and]Ehe most unstable
of them correspond to wavelengths that fit into the finitewavelength fit inside the length of the primary filament. The
length of the filament. Here is our criterion. above-mentioned criterion predicts that these two filaments

For a given filament, if the most unstable wave mode hashould pinch off at points internal to the filamdiristead of
the longest wavelength that fits into the finite length of thenear the ends and they did.
filament, then that filament pinches off first near its ends. If  (e) The filaments of fluids A, B, and C all pinched off
the most unstable wave mode has a wavelength that irst near their ends, as predicted. The contracting filaments
shorter than the length of the filament, then the filamenof Al, A2, B1, and B2 remained stable after pinch-off and
pinches off at one or more interior points each resulted in one satellite drop. The contracting filament

Below are some comments and disclaimers that are resf fluid B3 showed some nonuniformity, but the nascent in-
quired in using this criterion, followed by a detailed outline stability did not grow, and one satellite drop was formed.
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TABLE Il. Spatial and temporal resolution for each experiment shown infilament widths and filament lengths were obtained directly

Fig. 2. from the monitor, from the hard copies and/or using PhotoA-
Spatial resolution Temporal resolution dobe on the computer for image enhancement and edge de-
Fluid (um pixel) (frame/s tection. Comparisons among the different techniques did not
Al 110 3000 show significant var|ab|I|_ty. _
A2 111 3000 Measurements for filament width and length were ob-
B1 33.6 3000 tained as follows. First, for all fluids, the experiment was
B2 25.6 3000 imaged with a coarse resolution so that the entire drop was
B3 33.6 3000 visible until pinch-off. From this global view, reference
g gg:s g’ggg points were obtained. In particular, we noted the location of
E 42.1 3000 the drop when we first judged a filament with/9z=0 to

have formed. Then we noted the interval of time that passed
while the drop fell from this location until we first observed
either necking at the ends of the filamefdr fluids A, B,
tem. Table | lists the fluid propertigsiscosity, surface ten- and C or wavelike instabilities on the filameffior fluids D
sion, density as well as the experimental parametétsw  and B. Measurements of filament width for fluid A were
rate and orifice size obtained from this global view during this time-interval.
Fluids B, C, D, and E were silicone oi{®ow Corning Second, measurements of length were obtained from this
chosen for their ranges of viscosities from about 100 to 100@ime series by placing the reticule from the imager onto the
times more viscous than water. The surface tension of theddament boundary and measuring the length under it for
oils did not vary significantly. Fluid A was a commercial which dh/9z=0. These measurements are accurate to within
vegetable oilWeis brangl, with a surface tension that varied =0.01 cm.
significantly from that of the silicone oils. Viscosities were Third, we zoomed-in the imager to obtain higher-
measured in a temperature-controlled bath; see Ref. 5 faesolution for measurements of filament width, for all fluids
details of fluids A and B. Surface tension was measured witlexcept C. The resolutions are listed in Table Il. In these
a DuNouy tensiometer at room temperature. Experiments Aimages a portion of the filament was in the image, but neither
and A2 used the same fluid with different flow rates. Experi-the orifice nor the drop was in the image during measure-
ments B1-B3 used the same fluid with different orifice sizesments. The position of the image was known relative to the
The flow rates were measured as an average over seveaifice and to the reference location obtained from the global
drops. view. We waited a knowrismall) amount of time after the
For a given experiment, the oil was poured into a reserdrop passed this location. Then this time was defined to be
voir and left open to the atmosphere. It dripped from ant=0 in the corresponding measurements of filament width.
orifice under gravity at a rate controlled by a needle valve(Filament lengths are also referenced to this tinhveasure-
The orifice was machined to have a flat edge so that the oihents were taken during the time interval over which
coated the surface area between the inner and outer edged/dz=0, determined from the global view.
The radius of the outer edge is listed in Table I. The dimen-  To obtain values oH andt* from the measurements of
sions of the overall apparatus are given in Ref. 5. The appdHament width, we calculatedH,t*) from every possible
ratus was enclosed in a plastic box that was not temperatui@mbination of two data points. Then we considered the er-
controlled but stopped air-currents and external contaminaror (in a least-squares sendeetween the calculated values
tion. of H and the corresponding values lof/z. We considered
A Kodak EktaPro 1012 EM Motion Analyzer captured the values of H,t*) that provided the smallest error, the
images of the falling drop with spatial and temporal resolu-values obtained as an average over some small error, and in
tions listed in Table II. the end, we chose the values that, by eye, showed the best
Illumination was obtained using silhouette photography,agreement with the entire set of data points. These values of
following Ref. 24, with a 600 W lamp, an experimental H correspond to the horizontal lines in Fig. 2 and are listed
grade one-way transparent mirrdfEdmund Scientific, along with t* in Table Ill. They could have changed by
A40,047 and reflective screen materidScotchlite 3M  about=5% each. This variation did not effect the results of
7615. The mirror, placed between the camera and drop, wathe stability calculations. The results of these calculations are
oriented at a 45° angle to the camera’s face. Approximatehalso listed in Table Ill. In particular, we list the values of the
50% of the incident light was reflected toward the drop. Thewave numberm, that had the maximum growth rafom
reflective material, placed directly behind the drop, reflectedEg. (48)] at timet=0. For fluids(A, B), this occurred at the
the incoming light rays back toward the drop. The effect oflongest wavelength that fit into the filament at that time; for
this setup was to render the drop as a shadow. The reflectivuids (C, D, E), it occurred at the peak of the curve corre-
material, rated as 98% efficient, sends back the light withirsponding to that shown in Fig. 3.

an angle of 0.5° of its initial patff resulting in less scatter- Finally, here are two comments about our observations.
ing of light around the edges of the imaged drops and &irst, because of inadequate spatial and temporal resolution,
higher-contrast image. we were unable to measure modal amplitudes as a function

Images were visible on a monitor and down-loaded toof time. Instead, we measured wavelengths that were observ-
video, to hard copy, and/or to a computer. Measurements adble at various times and at various spatial resolutions. We
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TABLE Ill. Measured values ofH,t*} and corresponding calculations of gnd
the most unstable wave numberat 7=t*.

¢(7)=0 ats=r.

Fluid [Cm*'_('s)uz] ZS) ”}S,;ng) Then (30b) can be written as
T

p’ ch e ore R = [ e#90,p(ms)as

B1 0.0018 0.0045 0.130 o

B2 0.0021 0.0043 0.094 , m?

B3 0.0025 0.0070 0.180 +f e¢<s>—2 P(m,s)ds—P(m,7),

C 0.0020 0.0048 0.099 0 S

D 0.0019 0.0083 0.148

E 0.0028 0.0211 0.253 =R1+R2—-P.

But
- 212

found that when we observed the filaments with a coarse 12~ froe¢(s)3s¢ m) P(m,s)ds
resolution, we could not resolve the short wavelengths; when
we observed with a fine resolution, we could not resolve the b9 m?/s? P ,
long wavelengths. For example, when viewing experiment E - ”sz+ m?2/s? (m,s)|70
at =0.17 s, with a fine resolution that allowed only a por- _
tion of the filament into the image, we observed wavelengths _ fTe¢(S)ﬁ S P(m.s) |ds
of about 0.6 cm. The image size was such that we could not 0 S| nés+m?/s? ’ ’
also observe wavelengths larger than about 1 cm. The am- )
plitudes were essentially 1 pixel. Thus, when viewing the :( m P(m,7)
filament at a coarser resolution, we could not resolve these nﬁr3+ m? '
amplitudes and would not observe those modes. Instead, B M2/ <2
when viewing the filament at a coarse resolution that allowed - J e?®g) —————P(m,s)|ds,
the whole filament-drop combination into the image, we ob- 70 nis+me/s

served waves with lengths of about 3 cm. They also haQNhere we have useB(m, 7o) =0 and (

. - 7)=0. Therefore,
amplitudes of about 1 pixe(We note that the most unstable

wavelength att=t* gives a wavelength at=0.17 of 4.2 nET‘Q'

cm) Presumably, fluids such as D and E, for which pinch-off ~ R(M:Nk. 7)== 22+ m? P(m,7)

occurs within the filament, admit many unstable modes and 5

at present we cannot observe their evolutions. T H(9) nys P q
Second, we also note that previous wotlshowed that + Toe Is nﬁs+ m?/s? (m.s)ds.

pinch-off occurred in a secondary filament localized at the ) o
end of the filament near the drop. Reference 2 observed thi§ the last integral, both the quantity in square brackets and

same structure at the orifice, while Ref. 5 did not observe i{tS derivative have bounds that are independent,afo the
for fluid B2. It was conjectured in Ref. 5 that this difference INt€gral vanishes ag— by Watson’s Lemm> This leads
was due to the difference in orifice sizes, since that of Ref. 3° (39). .

was significantly larger than that in Ref. 5. Our observations 10 evaluateR(m,ny,7) asy—0, expand(s) in a Tay-
support this conjecture: when we used the same fluid with 4" SEries in powers of, and integrate term by term. The first

larger orifice(in experiment B} the secondary filament did Ntégral cancels £ P(m,t)), and the other integrals vanish
form. asv—0. Becaus&’k(m,n,,7) andS(m,n,,7) both vanish as

v—0, one can show that the theory for a viscous fluid repro-
duces that of an inviscid fluid as—0.
APPENDIX B: LIMITING BEHAVIOR OF R(m,n,,7)

R(m,ny,7) and S(m,n,,7) are defined in(30). In this
appendix we show thaR(m,n,,7) satisfies(35) for large ~APPENDIX C: BOUNDS ON &(x) and on /lo(x)//1(x)
viscosity (v—o), and thatR(m,n,,7)—0 for small viscosity

(»—0). The behavior ofS(m,ny,7) is similar. In what fol- Lemma 1:With () defined in(36),

lows, we assume that botR(m,7) and J.P(m,7) have 4(0)=0, 9'(0)=0,
bounds that are independent of , , ,

Define Hx)>0 if x>0, 9'(x)>0 if x>0;

$(8)=— vn¥(7*— )2+ vm(r t—s7). dx)=<x i x=0.
so that Proof: It follows from (36) that

m? o (nH)?
j— 2 - ’ = —_—
dsp=v|ngs+ />0 for O<s<w, 9 (x) 4Xk§=:1 D2 (neH) 22 (CY
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For k=1, km<nH. Therefore the series fof}(y) con-
verges, as does that fa¥ (y). Then it follows from their
series that}(0)=0=1'(0), and thatd(y)>0, 6'(x)>0 for
x>0. To establish an upper bound &%) for x>0, observe
that

1 - 1
—_ 2 I
9(x)=2x E A2 Pk

SO

ks dk 2 %
ﬁ<x><2xzf ﬁ=—xf
o x“t+ (k) T Jo

Remark:Lemma 2 is due to Bernard Deconinck.
Lemma 2:

dy B
X

(x)
Hx)= Xlo(X)

Proof: The Bessel functiod (YY) can be written in terms of
an infinite product®

i

Y2
= !

where J;(nH)=0. Taking logarithms and differentiating
yields

- V2
InJl(Y)zlnY—InZJrIZl In(l—(nk—H)z>,
SO
(Y) 1 i 2Y/(ngH)?
J1(Y) &1 1-Y%(nH)?
1 2 Y?2

Y Y& (nH)*=Y* €2

But I,(x)=—iJy(ix) for x=0 (Ref. 23, p. 375 SetY
—iy in (C2):

1(X) 1 22 X2 1 9y
L0 X xE AT T ko ©
From Ref. 22,
d
dy AT01= X000, G 1e00 =1a(x), (C4)

Thereforel 1 (x)/11(x)=10(x)/11(x) — 1/x. Substituting this
into (C3) yields Lemma 2.
Lemma 3: h(x)/11(x) has the following properties.

o lolx) 2 1(x\? 1 (x\*
O 1oy 23] - ml3] rou
as y—0,
lo(x) 1

2z o0
+2X+2 2x +O(x )]

asy—x,

W o0~

Henderson et al.

o &l (3

Proof: Both I4(x) and 1;(x) have convergent Taylor
series expansions negr0.2223The representation ifi) fol-
lows from these. Similarly, both functions have asymptotic
expansions ag—, and(ii) follows from these. The differ-
ential equation ir(iii) follows from those in(C4).

for 0<y<oo.

Lemma 4:

lo(x) 1 [ 1
>—+4\/——=+1 for O<y<co,

LO0 " 2x YV (2x)? X

Proof: Define

LI

y
1-y*+==0.
"

SO

(CH

Lemma 4 asserts thag(x)/11(x)>y(x) for 0<y<o. The
assertion is valid ag—0 by (i) of Lemma 3, so we must
prove that it remains valid foy>0. The proof is by contra-
diction. Assume that there exis¥", 0<X* <o, such that
at y=X*,

Lo(X*)/11(X*)=y(X*). (C6)

If (C6) occurs more than once, then ¥t be the smallest
positive value at which(C6) is valid. Comparing(iii) of
Lemma 3 with(C5) shows that

d
dX I

Butlo(x)/11(x)>y(x) for x<X*, solo(x)/11(x) must
intersecty(y) from aboveat y=X*, andy(y) is a decreas-

ing function, so ifl o(x)/11(x) intersectsy/(x) from above at
=X*, then necessarily

d IO
dx I
This contradictt{C?), so there can be no such poit, and

Lemma 4 holds for aly>0.

lo

(C7)

)O at y=X*.

<0 at y=X*.

APPENDIX D: THE COEFFICIENTS IN (41)

Lemma 5:a(y)>0 for 0<y<c.
Proof: From (414,

Xlo\| [ xlo
a(0=\ 5|17 -1 —x* (D1)
I l1
From Lemma 4,
| 1 1
X012+ \/>+x?—1>0 for y>0.
I1 2 4
Using Lemma 4 again shows that fer-0,
a()>[3+ Vit X1 [— 2+ Vit x*1— x> (D2)
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The right-hand side ofD2) is identically zero, so this estab- This is a contradiction, so there can be no such piht

lishes Lemma 5.
Lemma 6:As x—0, a(x)—2.
Proof: Use (413 and (i) of Lemma 3.
Lemma 7:With B(x,vm?/7) and «(y) defined in(41),

vm? m?
B X~ —a(y)>0 for x>0, Tzo.
Proof: From (41), we may write
2vm?\[ [ xlo
B—a=T1(X)+( . ) T)—Xz—l}, (D3)
where
xlo\® xlo)\? xlo 2 xlo
Ti(x)=3 . -8 . +5 . —-3x T
1 1 1 1
+5x°.
From Lemma 4, fory>0,
xlo 1 1 2
[ R PN
=[Vi+x*—31>0.
Meanwhile,T,(x) can be factored:
| 0|2 [xI
Tl<x>=[3<ﬁ -5 (ﬁ —(ﬁ)—f . (o4
l Iy l

Comparing with(D1) shows that the second factor(iD4) is
a(y), so by Lemmas 5 and 6 it is positive fge0.
To show that the first factor itD4) is positive, define

5
§.
It follows from (i) of Lemma 3 that asy—0, T»(x)
—1/3>0. We need to show thdtz(x)>0 for all y>0. Use
(iii) of Lemma 3, plus algebra, to show that
dT, 5 (T2 4(Ty

dy * 9% x 3x

|
Tz(x)=(X|—l°

(D5)

ThereforeT,(x)>0 for all y=0. Therefore both factors in
(D4) are positive fory=0, so T,(x)>0. Therefore both
terms in(D3) are positive fory>0, vm?/ r=0. This com-
pletes the proof.

Lemma 8:As y—0 andm—0, f—a—2.

Proof: This follows from (D3), (D4), and (i) of
Lemma 3.
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