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Abstract

Historically, inverse spectral theory has been concerned with the relationship between

the geometry and the spectrum of compact Riemannian manifolds, where “spectrum”

means the eigenvalue spectrum of the Laplace operator as it acts on smooth functions

on a manifold M . We examine this relationship in the non-smooth setting, that is,

for manifolds which have singularities. We generalize several relevant geometric tools

to the setting of cone-surfaces; in joint work with Hugo Parlier, we exhibit a collar

theorem and a Bers’ theorem for cone-surfaces. We describe all cone-surfaces of fixed

signature in terms of an underlying combinatorial skeleton and Fenchel-Nielsen pa-

rameters. On the spectral side, we give a partial extension of Huber’s theorem to

Riemann orbisurfaces and use this to show that there are at most finitely many Rie-

mannian orbifolds with the same Laplace spectrum as a given Riemann orbisurface.
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Chapter 1

Introduction

Due in part to their connections with string theory and the study of three-manifolds,

the study of singular spaces has been an active area of research in recent years (e.g.

[10]). There are still many unanswered questions about the geometry of such spaces;

we focus on the case of hyperbolic cone-surfaces with all cone angles less than π.

We ask: How do the cone points interact with the closed geodesics on the cone-

surfaces? Can we give restrictions on the lengths of certain closed geodesics? Is there

a description of all cone-surfaces of fixed signature in terms of a finite set of geometric

parameters?

We then specialize to the case of hyperbolic orbifolds. A hyperbolic orbifold

can be viewed as the quotient of hyperbolic space by a finite group of isometries,

and is thus a visual way to understand a group acting on a space. We will be

interested in relationships between the geometric properties of orbisurfaces and the

eigenvalue spectrum of the Laplace operator as it acts on smooth functions on the

orbisurface. Historically, spectral theory has been concerned with the smooth case.

Since Milnor’s pair of isospectral (same eigenvalue spectrum) non-isometric flat tori

in dimension 16, there has been much work to determine what properties of smooth
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manifolds are spectrally determined. Recently, the non-smooth case has begun to

be studied. For example, Gordon and Rossetti [18] showed that the spectrum of the

Hodge Laplacian acting on m-forms on a 2m-dimensional orbifold cannot distinguish

Riemannian manifolds from Riemannian orbifolds. The asymptotic expansion of the

heat kernel provides much geometric information in the smooth case; the first few

invariants of the heat expansion for orbifolds have been calculated (see [12],[17]). We

enter this conversation on the spectral theory of orbifolds by examining the question:

Are there geometric restrictions to isospectrality?

The thesis is organized as follows. We begin with a review of concepts from

hyperbolic geometry, including a description of several coordinate systems used in

the hyperbolic plane, the necessary components of a hyperbolic structure on a given

surface, and a discussion of some special types of hyperbolic polygons. We show

how to construct the basic building blocks, called “pairs of pants”, of our hyperbolic

surfaces. The surfaces under consideration have conical singularities; we restrict our

attention to those hyperbolic cone-surfaces which are compact, orientable, and have

all cone angles less than π. The behavior of geodesics on these so-called “admissible”

cone-surfaces is similar to the behavior of geodesics on hyperbolic Riemann surfaces;

we modify the relevant theory accordingly.

In Chapter 3, we begin our study of the geometry of admissible cone-surfaces. The

collection of pairwise disjoint simple closed geodesics which decompose an admissible

cone-surface into pairs of pants is called a partition; in joint work with Hugo Parlier,

we investigate certain distance sets around these geodesics as well as bounds on the

lengths of these geodesics. The collar theorem we prove is a natural generalization of

the collar theorem for Riemann surfaces; it shows the existence of disjoint neighbor-

hoods about partitioning geodesics and all cone points on an admissible cone-surface.

The neighborhoods about the geodesics are topological cylinders, while those about
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cone points are cones; the widths found for these neighborhoods are optimal. Bers’

theorem, which says that there is a length-bounded partition of a compact Riemann

surface, where the length bound depends only on the genus of the surface, has proved

to be a useful tool in studying spectral questions on compact Riemann surfaces. In

particular, it has been used to find a rough fundamental domain for the action of

the Teichmüller modular group, to find an explicit bound on the size of isospectral

families, and in estimates involving Fenchel-Nielsen parameters (see [6]). Its utility

stems from the fact that it allows one to significantly restrict the allowed lengths of

partitioning geodesics. We prove Bers’ theorem in the setting of admissible cone-

surfaces; our bound depends on the genus and the number of singular points in the

cone-surface.

Our study of the geometry of admissible cone-surfaces continues in Chapter 4.

We define cubic pseudographs, which serve as the underlying combinatorial skeleton

of admissible cone-surfaces. An explicit upper bound on the number of pairwise

nonisomorphic cubic pseudographs of fixed signature is exhibited. By gluing pairs of

pants along boundary geodesics of the same length according to such a pseudograph,

we can form an admissible cone-surface of specified signature. In fact, as we allow

the lengths of these geodesics and the twists we introduce in gluing to vary among

all possibilities, we obtain all admissible cone-surfaces of a fixed signature.

Beginning with Chapter 5, we restrict our attention to orbifolds, which can be

viewed as cone-manifolds in which all cone half-angles are of the form π
k
, for k an

integer greater than 1. Hyperbolic orbifolds are spaces which are quotients of hyper-

bolic space by discrete groups of isometries. We explain how this additional algebraic

structure can be exploited to give a convenient generating set for the group of isome-

tries. Finally, we show that every hyperbolic (or Riemann) orbisurface is finitely

covered by a smooth Riemann surface.
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The study of the spectral theory of Riemann orbisurfaces is the focus of Chapter

6. We begin with the necessary definitions and background concerning the eigen-

value spectrum of the Laplace operator acting on smooth functions on a Riemann

orbisurface. Then we move into the study of the relationship between the geometry

of an orbisurface and its Laplace spectrum. Using a version of Weyl’s asymptotic

formula for orbifolds, we are able to give obstructions to isospectrality of Riemann

orbisurfaces; these obstructions involve the genus and number of singularities of our

orbisurfaces. The length spectrum is the sequence of all lengths of all oriented closed

geodesics on the surface, arranged in ascending order. We show that the Laplace spec-

trum determines the length spectrum up to finitely many possibilities. Conversely,

knowledge of the length spectrum and the orders of the cone points determines the

Laplace spectrum. In the final section, we use this theorem to show finiteness of

isospectral sets of Riemann orbisurfaces.
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Chapter 2

Hyperbolic Geometry Background

2.1 The Hyperbolic Plane

Our discussion of this preliminary material closely follows that of Buser [6]. Unless

otherwise indicated, we use the Poincaré model of the hyperbolic plane. This model

consists of the subset

H = {z = x + iy ∈ C | y > 0}

of the complex plane C, together with the metric

ds2 =
1

y2

(

dx2 + dy2
)

.

Distance in the Poincaré model is given by

cosh dist (z, w) = 1 +
|z − w|2
2=z=w .
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The group

PSL (2,R) = {( a b
c d ) | a, b, c, d ∈ R; ad− bc = 1}/{±1} = SL (2,R) /{±1}

acts biholomorphically on H via the mappings

z 7→ az + b

cz + d
.

Moreover, PSL (2,R) leaves the hyperbolic metric defined above invariant and is

the group of orientation-preserving isometries of H. The geodesics in this model are

the generalized circles, i.e. Euclidean circles and lines, which meet the boundary of

H orthogonally. Note that we use H to denote both the hyperbolic plane and the

Poincaré model of the hyperbolic plane; our meaning will be clear from the context.

We recall some basic theorems for the hyperbolic plane.

Theorem 2.1.1. There exists a unique geodesic between any two distinct points of

H.

Theorem 2.1.2. Let a be a geodesic and p a point in H. Then there exists a unique

geodesic through p perpendicular to a.

Theorem 2.1.3. Let a and b be two geodesics in H with dist (a, b) > 0. Then there

exists a unique geodesic perpendicular to both a and b.

2.2 Coordinate Systems

There are several coordinate systems which are frequently used in hyperbolic geom-

etry, including polar coordinates, Fermi coordinates, and horocyclic coordinates (see

[6, pp.3-5]). Horocyclic coordinates are primarily useful for the study of surfaces with
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cusps, which will not be our focus in this work. We now give brief descriptions of

polar and Fermi coordinates.

Polar Coordinates

Let p0 ∈ H be fixed, and let v be a unit vector in the tangent space to H at p0.

For any point p ∈ H \{p0}, there is a unique geodesic η : [0,∞) → H through p with

η (0) = p0. We assume that η is parametrized by arclength. Let σ ∈ [−π, π) be the

directed angle from v to the tangent vector to η at p0, and ρ the distance from p0

to p, i.e. η (ρ (p)) = p. We call (ρ, σ) = (ρ (p) , σ (p)) the polar coordinates of p with

respect to p0 and v. In these coordinates, we write the hyperbolic metric as

ds2 = dρ2 + sinh2 ρdσ2. (2.1)

Fermi Coordinates

When considering the relation of points to curves in a hyperbolic surface, it is

often convenient to use Fermi coordinates. In these coordinates, we replace the base

point of polar coordinates by a base line.

Let η be a unit-speed geodesic in the hyperbolic plane. Then η has two “sides”,

one to the left and one to the right. More precisely, we have the directed distance

ρ from a point p ∈ H to η; this distance is positive or negative depending on the

location of p with respect to η. From the existence of a unique perpendicular from

a point to a geodesic in the hyperbolic plane, we know that there is a unique t such

that the perpendicular from p to η meets η at time t. We define (ρ, t) to be the pair

of Fermi coordinates of p with respect to η. The metric tensor in these coordinates

is given by

ds2 = dρ2 + cosh2 ρdt2. (2.2)
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We will adopt the sign convention that points to the left of an oriented geodesic η will

have negative distance ρ to η, while points to the right will have positive ρ-coordinate.

This agrees with the convention that points to the left of a counterclockwise-oriented

circle (i.e. points inside the circle) have smaller ρ-coordinate than points to the right

of, or outside, the circle.

2.3 Hyperbolic Structures

Our goal in this section is to define the hyperbolic structure of two-dimensional hy-

perbolic cone-manifolds. To do this, we will need to define various types of coordinate

charts. We begin by defining the hyperbolic cone and endowing it with a differen-

tiable structure; this will be the key component of a conical chart about a cone point.

We follow [11].

Fix p0 = i ∈ H. Let µ1, µ2 : [0,∞) → H be two geodesics such that µi(0) = p0

and γ is the angle between µi and the imaginary axis for i = 1, 2. We assume that

µ1 and µ2 are parametrized with respect to arclength and that γ is measured from

the imaginary axis. Note that µ1 and µ2 emanate from p0 and are symmetric with

respect to the imaginary axis. The isometry

z 7→ m(z) =
(cos γ)z + sin γ

−(sin γ)z + cos γ

carries µ1 onto µ2. The domain

D = {(ρ, σ) ∈ H | 0 < ρ <∞, −γ ≤ σ ≤ γ} ∪ {p0}

with metric

ds2 = dρ2 + sinh2 ρdσ2
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is a hyperbolic surface. We can glue the boundary of D under the pasting condition

PD given by

µ1(t) = µ2(t), ∀t ∈ [0,∞)

and obtain the quotient surface Cp0 := D mod PD = {[z]|z ∈ D} with

(i) [z] = {z} if z ∈ Int D

(ii) [z] = {z, z′} if z ∈ µ1, z
′ = m(z) ∈ µ2

(iii) [p0] = {p0}.

We call Cp0 a conic hyperbolic surface with point p0. We can modify our domain

D slightly as follows:

Dδ := {(ρ, σ) ∈ H | 0 < ρ < δ,−γ ≤ σ ≤ γ} ∪ {po}, δ > 0.

Then Dδ mod PD, where t ∈ [0, δ), is a hyperbolic cone with point p0 and radius δ,

denoted Cp0,δ.

Next we want to endow Cp0,δ with a differentiable structure. Let

D̄ = {(ρ̄, σ̄) ∈ H | 0 < ρ̄ < δ,−π ≤ σ̄ ≤ π} ∪ {p0},

and define a change of parameter ψ̄ : Dδ → D̄ by ρ̄ = ρ, σ̄ = π
γ
σ, ψ̄(p0) = p0. Then,

viewing Cp0,δ as a set of equivalence classes of points in Dδ, we can define a bijection

ψ : Cp0,δ \ [p0] → D̄ \ {p0} by

ψ([z]) =



















ψ̄(z) if z ∈ Int Dδ

ψ̄(z′) with z′ ∈ [z] if z′ ∈ µ1.
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Since D̄ \ {p0} is a differentiable manifold, there is a unique differentiable structure

on Cp0,δ \ [p0] which makes ψ a diffeomorphism. Our hyperbolic cone Cp0,δ with this

uniquely defined structure will be used below to construct an atlas on a hyperbolic

cone-surface.

For a thorough treatment of hyperbolic structures on Riemann surfaces (with or

without boundary), we refer the reader to [6, Ch.1,§2]. Charts on such surfaces will

be referred to as usual charts. We will now focus on the case of two-dimensional

hyperbolic cone-manifolds. Let S be a surface and p1, . . . , pn a collection of cone

points on S with pi ∈ Int S for i = 1, . . . , n.

Definition 2.3.1. Let (Ui0 , φi0) be a pair such that

(i) pi0 ∈ Ui0 and pi /∈ Ui0 ∀i 6= i0, i = 1, . . . , n

(ii) Ui0 ⊂ Int S

(iii) φio : Ui0 → Cpi0
,δ(γi0) is a homeomorphism, φi0(pi0) = pi0 , and 2γi0 is the angle

at the point pi0 .

We call (Ui0 , φi0) a conical chart about the point pi0 .

Definition 2.3.2. Given a surface S with cone points p1, . . . , pn, an atlas A1,2,...,n on

S is called conical hyperbolic if:

(i) For every s ∈ S, s 6= pi, there exists a usual chart (U, φ) ∈ A1,2,...,n with s ∈ U

and pi /∈ U for every i = 1, . . . , n.

(ii) For every i = 1, . . . , n there exists a conical chart (Ui, φi) with pi ∈ Ui.

(iii) Given two charts (U, φ) and (U ′, φ′) with U ∩U ′ 6= ∅, the map φ′ ◦φ−1 : φ(V ) →

φ′(V ) is an isometry for every connected component V ⊂ U ∩ U ′.
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Definition 2.3.3. Given a surface S with cone points p1, . . . , pn, a conical hyperbolic

atlas A1,2,...,n is called a conical hyperbolic structure if it is maximal with respect to

the conditions of Definition 2.3.2.

Such a structure induces on S a metric, which is Riemannian of constant curvature

-1 on S \ {p1, . . . , pn}. We say that the structure is complete if S is complete in the

induced metric.

Definition 2.3.4. We call a surface S with cone points p1, . . . , pn a hyperbolic cone-

surface if it is connected and has a complete conical hyperbolic structure.

The genus of a hyperbolic cone-surface is defined as for surfaces, i.e. as the number

of “handles” in the cone-surface.

Definition 2.3.5. Let S be a hyperbolic cone-surface of genus g with m boundary

components and n cone points, where each boundary component is a smooth closed

geodesic. We say that S is of signature (g,m, n).

Note that when S is assumed to have empty boundary, we often omit the m from the

signature and write the signature of S as (g, n). We define a lexicographic ordering

on the triples (g,m,n) as follows:

(g,m, n) < (g′, m′, n′) ⇔







































g < g′

or g = g′ and



















m < m′

or m = m′ and n < n′.

We can also define the area of a hyperbolic cone-surface (see [10]).

Definition 2.3.6. Let S be a hyperbolic cone-surface of signature (g, n) with cone
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angles 2ϕ1, . . . , 2ϕn. We define the area of S as

Area (S) = 2π(2g − 2) +
n
∑

i=1

(2π − 2ϕi).

We will sometimes restrict our attention to cone-surfaces whose cone angles have

a special form.

Definition 2.3.7. Let S be a hyperbolic cone-surface with cone points p1, . . . , pn. If

γi = π
ki
, ki ∈ N+ −{1}, i = 1, . . . , n, where γi is the half-angle at the point pi, then S

is called a Riemann orbisurface.

Note that S is an orbifold with n cone points of orders k1, . . . , kn, respectively.

2.4 Building Blocks

In this section we introduce the ideas needed to understand pairs of pants, which are

the basic building blocks of hyperbolic cone-surfaces. We begin with an overview of

geodesic polygons, followed by a description of how to glue such polygons.

Geodesic Polygons

We now consider hyperbolic geodesic polygons, which are compact domains P ⊂ H

with closed, piecewise geodesic boundary. We will assume that P is oriented for the

following discussion.

In order to understand the decomposition of hyperbolic cone-surfaces into pairs of

pants, we must study three special types of geodesic polygons. These are the trirect-

angle, the generalized quadrorthogonal triangle (GQT) and the geodesic hexagon.

We begin with some general terminology.

Let s, t be two consecutive sides of a geodesic polygon P with common endpoint p.

We order s and t according to the orientation of P , and denote this ordering by (s,t).

12



a

b

α

β
ϕ

Figure 2.1: Trirectangle

The angle u between s and t is defined to be the angle of the orientation-preserving

rotation which carries t to s and fixes p. We say that u is the subsequent angle of side

s and t is the subsequent side of angle u.

Definition 2.4.1. Let x and y be among the set of sides and angles of P . We say that

the ordered pair (x,y) is of angle type if (x,y) satisfies one of the following conditions:

1. The angle y is the subsequent angle of the side x.

2. (x,y) is a pair of consecutive sides, and x and y are orthogonal.

3. The side y is the subsequent side of the angle x.

Let P be a geodesic polygon described by the cycle aγbαcβ, where each element in

the list is either a side or an angle of P . We say that P is a generalized triangle if

every pair of consecutive elements in this cycle is of angle type.

Definition 2.4.2. Let P be a geodesic polygon given by abαϕβ. If there is exactly

one pair in this list of angle type (1), we say that P is a trirectangle. Note that P

has three right angles and four sides (see Figure 2.1).

We usually let ϕ denote the non-right angle and a, b, α, β the sides. Note that we

use this notation to mean both the label of the side (angle) and its length (measure).

Buser [6, p. 38] gives the following relationships among these various quantities:

13



Theorem 2.4.3. For every trirectangle with sides labelled as in Figure 2.1, we have

1. cosϕ = sinh a sinh b

2. cosϕ = tanhα tanh β

3. cosh a = coshα sinϕ

4. cosh a = tanhβ coth b

5. sinhα = sinh a cosh β

6. sinhα = coth b cotϕ.

Note that we can specify two of the five parameters which define a trirectangle,

and that this choice uniquely determines the remaining parameters. In particular, we

can specify ϕ and a. From Theorem 2.4.3 (i) we see that

b = arcsinh
(

cosϕ

sinh a

)

,

and for fixed ϕ, as a ranges over R+, so does b. We now turn to generalized

quadrorthogonal triangles (GQTs).

Definition 2.4.4. Let P be a geodesic polygon given by aγbαcβ. If there is exactly

one pair in this list of angle type (1), we say that P is a generalized quadrorthogonal

triangle (GQT).

Note that P has four right angles and five sides; that is, P is a geodesic pentagon.

See Figure 2.2.

We usually let γ denote the non-right angle and a, b, α, c, β the sides. These

quantities are related as follows ([6, p. 37]).
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b a

α β
γ

c

Figure 2.2: Generalized Quadrorthogonal Triangle

Theorem 2.4.5. For every GQT aγbαcβ as in Figure 2.2, the following relationships

hold:

1. cosh c = − cosh a cosh b cos γ + sinh a sinh b

2. cosh a : sinhα = cosh b : sinh β = sinh c : sin γ

3. cos γ = sinhα sinh β cosh c− coshα cosh β

Dianu showed the following theorem regarding the existence of GQT’s ([11, p.7]):

Theorem 2.4.6. Let x, y > 0 and z ∈ (0, γ0) with cos γ0 = − cosh min(x,y)
cosh max(x,y)

. Then there

exists a unique GQT with aγbαcβ such that α = x, β = y, and γ = z.

Note that since cosh u ≥ 1 ∀u ∈ R, we have cos γ0 < 0. Thus γ0 >
π
2
, and there is

a unique GQT for any specified x, y > 0 and any cone half-angle in (0, π
2
). As noted

in [11], if β < α then for γ = γ0, our GQT becomes a trirectangle with acute angle

θ = γ0 − π
2
. For γ such that cos γ ∈ (−1, cos γ0], our GQT is self-intersecting.

We next consider geodesic hexagons, where we use hexagon to refer to both the

domain and its boundary. We say that a geodesic hexagon P is convex if it is convex

as a domain. In geodesic hexagons, every pair in the cycle aγbαcβ is of angle type

(2). See Figure 2.3.

We have relationships among the lengths of the sides of a geodesic hexagon ([6,

p.40]):
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Theorem 2.4.7. Let P be a convex right-angled geodesic hexagon with consecutive

sides aγbαcβas in Figure 2.3. Then the following hold:

1. cosh c = sinh a sinh b cosh γ − cosh a cosh b

2. sinh a : sinhα = sinh b : sinh β = sinh c : sinh γ

3. cothα sinh γ = cosh γ cosh b− coth a sinh b

Additionally, we can make the following statement regarding the existence of convex

right-angled geodesic hexagons (see [6, p.40]):

Theorem 2.4.8. Let x, y, z > 0 be real numbers. Then there exists a unique convex

right-angled geodesic hexagon aγbαcβ with x = a, y = b, z = c.

Pasting

We now consider the process of pasting geodesic polygons along sides of equal

length (cf. [6]). Let P and P ′ be two disjoint convex geodesic polygons with

sides γ and γ′ of length l. Suppose that γ : [0, 1] → P and γ ′ : [0, 1] → P ′ are

parametrized with constant speed and opposite orientation. Then there is an isom-

etry m ∈ PSL(2,R) which carries γ to γ ′, i.e. m(γ(t)) = γ′(t) for all t ∈ [0, 1]. We
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can define an equivalence relation on P ∪ P ′ as follows:

[p] =



















{p} if p ∈ P ∪ P ′ − {γ ∪ γ′};

{p, p′} if ∃t0 ∈ [0, 1] such that p = γ(t0), p
′ = γ′(t0).

The above equivalence relation is said to be determined by the pasting condition

PP+P ′ given by

γ(t) = γ′(t), t ∈ [0, 1].

Note that F := P + P ′ mod PP+P ′ is isometric to m(P ) ∪ P ′.

We can, in a similar fashion, paste together a collection of hyperbolic surfaces. Let

S1, S2, . . . , Sm be a set of disjoint hyperbolic surfaces with pairwise disjoint piecewise

smooth sides γ1, γ
′
1, γ2, γ

′
2, . . . , γn, γ

′
n. We suppose that γk, γ

′
k are parametrized with

the same constant speed on an interval Ik, i.e. γk : Ik → S, where S := S1 ∪ S2 ∪

· · · ∪ Sm. When γk and γ′k are smooth closed geodesics, we allow Ik to be the interval

(−∞,+∞) and we parametrize the geodesics periodically. The orientation of the

geodesics is assumed to be such that the quotient surface defined below is orientable.

We define the pasting condition PS on S to be

γk(t) = γ′k(t), t ∈ Ik, k = 1, . . . , n.

As above, this condition determines an equivalence relation on S, and we have the

quotient space F := S1 + S2 + · · · + Sm mod PS. In the following theorem (see [6,

p.13]) we see that F is a hyperbolic surface. Note that a vertex cycle is the set of

all vertices of S1, S2, . . . , Sm which define a single point of F (where the point can lie

either in the interior or on the boundary of F).

Theorem 2.4.9. Suppose that the following conditions hold:
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(i) For every vertex cycle which gives rise to an interior point of F , the sum of the

interior angles at the vertices is equal to 2π.

(ii) For every vertex cycle which gives rise to a boundary point of F , the sum of the

interior angles at the vertices is less than or equal to π.

Then there is a unique hyperbolic structure on F such that the projection σ : S1∪S2∪

· · · ∪ Sm → F is a local isometry. Suppose that, in addition, we have:

(i) F is connected.

(ii) The hyperbolic structure on Sk is complete for k = 1, . . . , m.

(iii) For any pair of non-adjacent sides in the list γ1, γ
′
1, . . . , γn, γ

′
n which lie on the

same Sk, there is positive distance between the sides.

Then the hyperbolic structure on F is complete.

To conclude our discussion of pasting, we define the inverse process of cutting.

Definition 2.4.10. Let F be as above, and σ : S1 ∪ S2 ∪ · · · ∪ Sm → F the natural

projection. Define

C = σ(γ1) ∪ σ(γ2) ∪ · · · ∪ σ(γn) = σ(γ′1) ∪ σ(γ′2) ∪ · · · ∪ σ(γ′n).

Then we can recover S1, S2, . . . , Sm by cutting F open along C.

2.5 Pairs of Pants

The basic building blocks for admissible cone-surfaces are Y -pieces, V -pieces, and

joker’s hats, collectively called “pairs of pants.” With our understanding of geodesic

polygons, pasting, and hyperbolic structures, we can now construct these pieces.
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Figure 2.4: Gluing Hexagons

Let G and G′ be two copies of a right-angled geodesic hexagon in the hyperbolic

plane. The sides of G (respectively, G′) are labelled by the cycle α1c3α2c1α3c2 (re-

spectively, α′
1c

′
3α

′
2c

′
1α

′
3c

′
2). See Figure 2.4. We assume that all sides are parametrized

on the interval [0,1] with constant speed. The pasting condition PG+G′ is

αi(t) = α′
i(t) := ai(t), i = 1, 2, 3, t ∈ [0, 1].

The quotient space F := G+G′ mod PG+G′ is a hyperbolic surface with three smooth

closed boundary geodesics γ1, γ2, γ3 defined by

t 7→ γi(t) :=



















ci(2t) , 0 ≤ t ≤ 1
2

c′i(2 − 2t) , 1
2
≤ t ≤ 1

for i = 1, 2, 3.

Definition 2.5.1. A hyperbolic surface of type (0,3,0) is called a Y -piece.

Every Y -piece is obtained by gluing two isometric right-angled geodesic hexagons

as above (see [6, §3.1]). We can also decompose every Y -piece into such hexagons in

a canonical fashion (see [6, Prop. 3.1.5]):
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Proposition 2.5.2. Let S be a given Y -piece. For every pair of boundary geodesics

of S there exists a unique simple common perpendicular. The three perpendiculars

together decompose S into two isometric right-angled geodesic hexagons.

We have the following statement regarding the possible lengths for the boundary

components of a pair of pants:

Theorem 2.5.3. Fix l1, l2, l3 ∈ R+. Then there exists a unique Y -piece with boundary

geodesics of lengths l1, l2, l3.

The construction of V -pieces is similar; we now use GQT’s as our geodesic poly-

gons. Let T be a GQT described by the cycle µ1γµ2η1µ3η2, and T ′ a copy of T with

cycle µ′
1γµ

′
2η

′
1µ

′
3η

′
2. See Figure 2.5. We assume that all sides are parametrized on the

unit interval with constant speed. The pasting conditions are:

µi(t) = µ′
i(t) :=







































a(t) if i = 1

b(t) if i = 2 ∀t ∈ [0, 1]

c(t) if i = 3

and

t 7→ α(t) :=



















η1(2t) if 0 ≤ t ≤ 1
2

η′1(2 − 2t) if 1
2
≤ t ≤ 1

t 7→ β(t) :=



















η2(2t) if 0 ≤ t ≤ 1
2

η′2(2 − 2t) if 1
2
≤ t ≤ 1

The quotient surface F thus obtained has a cone point with angle 2γ and two bound-

ary components which are smooth closed geodesics.
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Figure 2.5: Gluing GQT’s

Definition 2.5.4. An admissible cone-surface S of signature (0, 2, 1) is called a V -

piece.

As was the case with Y -pieces, every V -piece is obtained by gluing two isometric

GQT’s in this way. There is also a canonical decomposition of a given V -piece into

two such GQT’s (see [11]).

Proposition 2.5.5. Let S be a given V -piece. There exists a unique simple com-

mon perpendicular between the two boundary geodesics of S. There exist unique sim-

ple geodesics from the cone point of S to the boundary geodesics, each of which is

perpendicular to its respective boundary geodesic. The three perpendiculars together

decompose S into two isometric GQT’s.

From Theorem 2.4.6, we see that

Theorem 2.5.6. Fix `1, `2 ∈ R+ and γ ∈ (0, γ0) with cos γ0 = − cosh min(`1/2,`2/2)
cosh max(`1/2,`2/2)

.

Then there exists a unique V -piece with boundary geodesics of lengths `1, `2 and cone

angle 2γ.

Finally, we construct joker’s hats, using trirectangles as our basic geodesic poly-

gons. Let R1 be a trirectangle described by the cycle a1b1α1ϕ1β1, and let R2 be a

trirectangle described by the cycle a2b2α2ϕ2β2. If a1 = a2, then we can glue R1 to R2
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along a1 and a2, which we assume are parametrized on the unit interval with constant

speed. We define the pasting condition PR1+R2 by

a1(t) = a2(t) := a(t), t ∈ [0, 1]. (2.3)

Define R := R1 + R2 mod(2.3),and let b(t) ∈ R be the geodesic obtained by first

traversing b1(t) and then traversing b2(t), and similarly for β(t) ∈ R. We assume that

all sides of R are parametrized on [0, 1] with unit speed. Let R′ be a copy of R. Then

we can glue R and R′ with pasting conditions

β(t) = β ′(t) := p(t) ∀t ∈ [0, 1]

αi(t) = α′
i(t) :=



















q1(t) if i = 1

q2(t) if i = 2 ∀t ∈ [0, 1]

and

t 7→ r(t) :=



















b(t) if 0 ≤ t ≤ 1
2

b′(t) if 1
2
≤ t ≤ 1

The quotient surface F thus obtained has two cone points with cone angles 2ϕ1 and

2ϕ2, and one boundary component which is a smooth closed geodesic.

Definition 2.5.7. An admissible cone-surface S of signature (0, 1, 2) is called a

joker’s hat.

We can make similar observations as in the cases of Y-pieces and V-pieces: every

joker’s hat is obtained via this construction, and there is a canonical decomposition

of a joker’s hat into such pieces. Finally, for any choice of acute angles ϕ1 and ϕ2, it

follows from the remark following Theorem 2.4.3 that the length of r(t) can be chosen
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to be any positive real number.

2.6 Geodesics on Hyperbolic Cone-Surfaces

Many of our subsequent results require an understanding of the behavior of geodesics

on hyperbolic cone-surfaces. We now give the necessary background.

Assumption 2.6.1. Henceforth, we will assume that all our hyperbolic cone-surfaces

are compact and orientable. If S is a hyperbolic cone-surface in which all cone angles

are less than π, we will call S an admissible cone-surface.

We begin our exploration of geodesic behavior with a definition.

Definition 2.6.2. Let M be a topological space, and let µ1, µ2 : S1 →M be two closed

curves on M . We say that µ1 and µ2 are freely homotopic if there exists a continuous

map c : [0, 1] × S1 →M such that

c(0, t) = µ1(t) and c(1, t) = µ2(t) ∀t ∈ S
1.

Suppose that S is an admissible cone-surface. We denote the set of all cone points

on S by Σ. We say that two curves in S are freely homotopic if they are freely

homotopic on S \Σ. If a curve in S is freely homotopic to a point in S \Σ, then it is

said to be homotopically trivial. A closed curve and a cone point are freely homotopic

if they are freely homotopic on S. By curve or geodesic, we mean the set of all points

lying on the curve. We have the following properties of closed curves.

Proposition 2.6.3. Let S be an admissible cone-surface.

1. Every non-trivial simple closed curve on S \ Σ is freely homotopic to either a

unique simple closed geodesic or a unique cone point. (For a closed curve δ, the
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associated closed geodesic will be denoted G(δ).)

2. Given two non-intersecting smooth simple curves α and β on S there is at least

one geodesic path c between them such that dS(α, β) is realized by c. Such a

path c is perpendicular to α and β. If α and β are geodesic, in a free homotopy

class of paths with end points moving on α and β, such a path c is unique. This

property remains true for singular points in place of one or both geodesics.

These properties result from the constant negative curvature on an admissible

cone-surface S, and can be proved as in the case of compact hyperbolic Riemann

surfaces. We prove the first statement to give an indication of the arguments used.

Proof. Let c be a non-trivial simple closed curve on S \ Σ, and let C be the free

homotopy class of c. We can find a sequence of smooth closed curves {γn}∞n=1 ⊂ C

such that the lengths of γn converge to the infimum L as n→ ∞. Assume that the γn

are parametrized with constant speed on S1. Then the Arzelà-Ascoli theorem gives

the existence of a subsequence which converges to a rectifiable curve γ : S1 → S with

`(γ) = L. If L = 0, then c is homotopic to a cone point. If L > 0, then it follows that

γ is a geodesic from the minimality of L. The argument that γ is simple is exactly

the same as in the proof of Buser’s Thm. 1.6.6(iii).

In addition to knowing how curves on cone-surfaces behave under homotopies, we

need to know about the existence of certain curves. Dianu ([11]) showed the following

theorem.

Theorem 2.6.4. Let S be an admissible cone-surface of signature (g,m, n) > (0, 2, 1),

(g,m, n) 6= (0, 3, 0). Then there exists a simple closed curve ν on S which is not

homotopic to a boundary component or to a cone point of S. Furthermore, ν does

not pass through any of the cone points of S.
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This theorem can easily be extended:

Proposition 2.6.5. Let S be an admissible cone-surface of signature (0, 0, 4) ≤

(g,m, n) < (0, 1, 0), (0, 1, 2) < (g,m, n) < (0, 2, 0), (g,m, n) > (0, 2, 1), where

(g,m, n) 6= (0, 3, 0). Then there exists a simple closed curve ν on S which is not

homotopic to a boundary component or to a cone point of S. Furthermore, ν does

not pass through any of the cone points of S.

Proof. The only cases to prove are for signature (0, 0, k), k ≥ 4, and (0, 1, l), l ≥ 3.

Note that there are always at least two cone points on such a surface; choose two

cone points p1 and p2. Let δi be a circle centered at pi of radius εi > 0, i = 1, 2, and

let σ be the common perpendicular of δ1 and δ2. Define µ = δ1 ◦σ ◦ δ2 ◦σ−1, and note

that µ is homotopic to a nontrivial simple closed curve ν on S \ Σ. The signature of

S implies that ν is not homotopic to a boundary component.

Henceforth, we make the convention that an admissible cone-surface has one of the

following signatures: (0, 0, k), k ≥ 4, (0, 1, l), l ≥ 2, or (g,m, n) ≥ (0, 2, 1), (g,m, n) 6=

(1, 0, 0).
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Chapter 3

Partitions

An admissible cone-surface can be decomposed into pairs of pants. The geodesics

involved in such a decomposition have several nice properties; in this chapter, we

investigate certain distance sets around these geodesics, and bounds on the lengths

of such geodesics. The material in this chapter is joint work with Hugo Parlier (see

[13]).

3.1 Decomposition of Admissible Cone-Surfaces

It is well-known that every compact Riemann surface of genus greater than one can be

decomposed into Y -pieces (e.g. [6]). Dianu ([11]) showed that an admissible Riemann

orbisurface can be decomposed into Y -pieces and V -pieces. Specifically, he proved:

Theorem 3.1.1. Let S be an admissible Riemann orbisurface of type (g,m, n) ≥

(0, 2, 1). Then there exists a decomposition of S into 2g − 2 + m Y -pieces and n

V -pieces by 3g − 3 +m + n simple closed disjoint geodesics.

We give a sketch of the proof for completeness.
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Proof. (Sketch) The argument is by induction on the type (g,m, n) of the surface S.

Consider the curve ν of Theorem 2.6.4. Cut S open along ν. The resulting surface S ′

either remains connected or separates into two connected components. We apply the

induction hypothesis in each case, using the additional facts that ν is not homotopic

to a boundary component or to a cone point of S in the latter situation. This gives

that S can be decomposed into pieces which are topologically equivalent to Y -pieces

and V -pieces.

Then there is some work to show that we can replace ν by a geodesic in its

homotopy class. Take a sequence of curves in the free homotopy class of ν whose

lengths converge to the infimum of their lengths. The Arzela-Ascoli theorem gives the

existence of a subsequence converging to some curve ν̃, and the lower semicontinuity

of the length function guarantees that ν̃ is minimal, with length equal to the infimum.

We then argue that ν̃ is in the free homotopy class of ν, using a proof by contra-

diction of the minimality of ν̃ and the fact that during a free homotopy, curves on S

cannot pass over cone points. To show that ν̃ is simple, we use the universal cover of

S (possible because S is an orbifold) and give the standard argument from the case

of hyperbolic surfaces (e.g. [6, p.20]).

Finally we invoke Epstein’s theorem (see [6]) to get a homeomorphism which fixes

the boundary components and cone points of S and takes ν onto ν̃. Using ν̃ as our

geodesic of decomposition, we see that S can be decomposed into 2g−2+m Y -pieces

and n V -pieces.

Dianu’s proof of this theorem includes the case of cone points of order 2, but

that is not our focus. In fact, Dianu’s theorem holds in the more general context

of admissible cone-surfaces. The proof only required the hypothesis of orbifold cone

angles in showing that ν̃ is simple. We have the following generalization.
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Theorem 3.1.2. Let S be an admissible cone-surface of signature (g,m, n) > (0, 2, 1).

Then there exists a decomposition of S into 2g − 2 +m Y -pieces and n V -pieces.

Proof. The proof is exactly as in the case of an admissible Riemann orbisurface,

except that we must show that ν̃ is simple without resorting directly to the universal

cover.

Note that ν̃ does not pass through any cone points. Thus, we can remove

small neighborhoods of all the cone points without interfering with our decompos-

ing geodesic. The surface that results is a hyperbolic surface with smooth (although

not geodesic) boundary. We can then invoke a theorem of Buser ([6, Thm. 1.6.6])

to conclude that ν̃ is simple. Epstein’s theorem can be applied as above to get a

decomposition of S into 2g − 2 Y-pieces and n V-pieces.

Thurston [33] noted that there exists a decomposition of an admissible Riemann

orbisurface of any permitted signature (see the convention at the end of Chapter

2) into pairs of pants, including joker’s hats. This was based on a decomposition

of the orbifolds into primitive pieces; we can carry out the same decomposition for

admissible cone-surfaces. The only modification required in the proof of Theorem

3.1.2 is in the first step, that of finding an initial simple closed geodesic along which

to cut. By Proposition 2.6.5, an admissible cone-surface S always contains a simple

closed curve which is not homotopic to a boundary component or to a cone point; we

take this as our initial geodesic. So an admissible cone-surface can be decomposed

into pairs of pants. A collection of pairwise disjoint simple closed geodesics which

decompose a (cone-)surface into pairs of pants is called a partition.
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3.2 Collars

The collar theorem for compact hyperbolic Riemann surfaces (e.g. [21], [5]) states

that surrounding a simple closed geodesic there is a tubular neighborhood, called a

collar, which is a topological cylinder. This neighborhood is of a certain width which

depends uniquely on the length of the geodesic. Furthermore, if two simple closed

geodesics do not intersect then their collars are disjoint. Finally, the values given

for the widths of the collars are optimal (e.g. [31], [26]). There has been interest in

proving a similar theorem for orbifolds (e.g. [11], [16] and [23]), where the object was

often to estimate minimal distance between singular points based on the order of the

points. The collar theorem for admissible cone-surfaces has the same properties as

the original collar theorem, and is thus a natural generalization.

Theorem 3.2.1. Let S be an admissible cone-surface of signature (g, n) with cone

points p1, . . . , pn and cone angles 2ϕ1, . . . , 2ϕn. Let 2ϕ be the largest cone angle. Let

γ1, . . . , γm be disjoint simple closed geodesics on S. Then the following hold.

1. m ≤ 3g − 3 + n.

2. There exist simple closed geodesics γm+1, . . . , γ3g−3+n which together with

γ1, . . . , γm form a partition of S.

3. The collars

C(γk) = {x ∈ S | d(x, γk) ≤ wk = arcsinh(cosϕ/ sinh
γk

2
)}

and

C(pl) = {x ∈ S | d(x, pl) ≤ vl = arccosh(1/ sinϕl)}

are pairwise disjoint for k = 1, . . . , 3g − 3 + n and l = 1, . . . , n.
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4. Each C(γk) is isometric to the cylinder [−wk, wk] × S1 with the Riemannian

metric ds2 = dρ2 + `2(γk) cosh2 ρdt2.

Each C(pl) is isometric to a hyperbolic cone [0, wl] × S1 with the Riemannian

metric ds2 = dρ2 +
ϕ2

l

π2 sinh2 ρdt2.

Before proceeding to the proof, we must introduce the following construction. Let

p be a cone point and γ a simple closed geodesic on S. Let c be a simple geodesic

path from p to γ, perpendicular to γ. These elements describe a unique pair of pants

in the following manner. Let δ be the closed curve obtained by taking γ ◦ c ◦ η ◦ c−1

as in Figure 3.1.

Then G(δ) is either a simple closed geodesic or another cone point, and in either

case (p, γ,G(δ)) is a pair of pants. Using exactly the same technique with two cone

points and a simple geodesic path between them, or with two simple closed geodesics

and a perpendicular simple geodesic path between them, we get pairs of pants that

are uniquely determined. We will use this construction in the following proof of the

collar theorem for admissible cone-surfaces.

Proof. The first two points are equivalent to the problem of counting the number

of geodesics in a partition for a surface of signature (g, n), and showing that any
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collection of pairwise disjoint simple closed geodesics can be completed to form a

partition. These questions are not new and the proofs are known (e.g. [6, p.112]).

The first step in proving the theorem is to show that a cone point pl is at a distance

of at least arccosh(1/ sinϕl) from all simple closed geodesics. Let γ be a simple closed

geodesic on S. Take a geodesic path c that realizes the distance between pl and γ (i.e.

such that `(c) = d(pl, γ)). Then take the unique pair of pants obtained from pl, γ and

G(γ ◦ c ◦ η ◦ c−1) as discussed previously. Either this pair of pants is a V -piece or a

joker’s hat. In both cases extract the trirectangle as in Figures 3.2 and 3.3.

From Theorem 2.4.3 (3) we have

cosh c =
cosh h

sinϕl

where h is as in figure 3.3. It follows that c > arccosh(1/ sinϕl).

Let pl and pl′ be two distinct cone points. Let b be a path that realizes distance
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between them. Let γ be a simple closed geodesic that crosses b; such a geodesic must

exist by Proposition 2.6.5. It is clear that `(b) is necessarily greater than or equal to

the distance from pl to γ added to the distance from pl′ to γ. From what precedes we

have:

`(b) ≥ d(pl, γ) + d(pl′, γ) > arccosh

(

1

sinϕl

)

+ arccosh

(

1

sinϕl′

)

.

It follows that the distance sets C(pl) and C(pl′) are disjoint.

Let γk and γk′ be two disjoint simple closed geodesics. Let c be a path that realizes

distance between them. The unique pair of pants determined by c, γk and γk′ is either

a Y -piece or a V -piece. In the first case it follows that C(γk) and C(γk′) are disjoint

sets from the collar theorem on Riemann surfaces. In the latter case, consider Figures

3.4 and 3.5.

Notice that only half of the collar around a given boundary geodesic is contained

in a pair of pants. Also note that both angles ϕ1 and ϕ2 are strictly inferior to ϕ.
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From Theorem 2.4.3 (1) applied to Q1 we obtain

sinh c1 =
cosϕ1

sinh γk

2

,

and analogously for Q2. From this we obtain that

c1 = arcsinh

(

cosϕ1

sinh γk

2

)

,

and

c2 = arcsinh

(

cosϕ2

sinh γk′

2

)

.

It follows that the distance sets C(γk) and C(γk′) are disjoint, because each collar is

the union of two such half-collars.

It remains to prove that for arbitrary pl and γk the collars are disjoint. Let c be a

geodesic path that realizes the distance between them. The collars around both the

cone point and the geodesic have widths which depend only on their angle or length.

It thus suffices to consider the case where the cone point and the geodesic would be as

close as possible. This case would occur if the pair of pants resulting from pl, γk and

c were a joker’s hat with both cone angles equal to 2ϕ. To see this, consider Figure

3.3. Let h grow continuously; as it approaches the limiting case (when ϕl reaches the

endpoint at infinity of c), ϕl tends to zero. Conversely, as ϕl grows, h and c shrink,

bringing the cone point closer to the relevant geodesic. In the case of a joker’s hat

with both cone angles equal to 2ϕ, Figure 3.6 would apply.

From Theorem 2.4.3 (6) one obtains

sinh c = coth
γk

4
cotϕ.
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Figure 3.6: Trirectangle with acute angle ϕ

This in turn can be expressed as

sinh c =
cosh γk

2
+ 1

sinh γk

2

cotϕ.

Let us compare this with the value obtained by calculating sinh(wk + vl). By

calculation one obtains

sinh(wk + vl) =
1 +

√

cos2 ϕ+ sinh2 γk

2

sinh γk

2

· cotϕ.

By comparison and because ϕ < π
2

we obtain that c > wk + vl. This implies that the

distance sets C(γk) and C(pl) are disjoint.

The last point of the theorem is obtained as in the classical theory of Riemann

surfaces for C(γk) (see [6]), and was shown by Dianu ([11]) for C(pl).

An example of the utility of Theorem 3.2.1 is the following natural corollary.

Corollary 3.2.2. Let γ and δ be closed geodesics on S which intersect each other

transversally, and assume that γ is simple. Then

sinh
`(γ)

2
sinh

`(δ)

2
> cosϕ.
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Remark 3.2.3. The values for the collars are optimal in the following sense. The

collar around a simple closed geodesic γ can be seen as a distance set with the following

property: if another simple closed geodesic enters C(γ), then it necessarily intersects

γ. Replacing wγ = arcsinh(cosϕ/ sinh γ
2
) by w = wγ + ε with ε > 0 would be fatal to

this property. In fact, for any ε > 0 there are an infinity of simple closed geodesics

that intersect the enlarged collar but not γ. To prove this, take a V -piece containing γ

and p where the cone angle at p is exactly 2ϕ. The other boundary geodesic γ ′ of the

V -piece can be chosen as long as desired (see [25]). From the formulas obtained in

the proof, it follows that γ ′ can be arbitrarily close to the collar of γ. What is striking

is that the sharp bound for the width of the collar is independent of the location of

the geodesic on the surface. In an analogous fashion, one can show that the bound for

collars around cone points is also sharp.

3.3 Bers’ Theorem

Bers’ theorem states that there is a length-bounded partition of every compact Rie-

mann surface of genus g ≥ 2, where the length bound is a constant depending only on

g. Recall that a partition is a collection of pairwise disjoint simple closed geodesics

which decompose the surface into pairs of pants; in the case of Riemann surfaces,

a partition is a decomposition into Y -pieces. Buser gave an explicit bound for the

lengths of the geodesics in such a partition, and also gave a bound for the lengths of

decomposing geodesics in the non-compact case (see [6, Ch. 5]). In this section we

prove an analogous result in the setting of admissible cone-surfaces. Specifically, we

show

Theorem 3.3.1. Let S be a compact admissible cone-surface of signature (g, n). Then

there exists a partition P of S such that every geodesic in P has length less than a
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constant Lg,n.

Proof. Let p1, . . . , pn be the cone points on S with corresponding cone angles

2ϕ1, . . . , 2ϕn. We define

Zi(ri) = {x ∈ S| dist(x, pi) ≤ ri},

for i = 1, . . . , n. We denote the boundary of Zi(ri) by βi. Each neighborhood Zi(ri)

admits polar coordinates, and we have

Area Zi(ri) = 2ϕi(cosh ri − 1).

For i = 1, . . . , n, we also know that

Area Zi(ri) < Area S.

This implies

ri < arccosh

(

1 +
Area S

2ϕi

)

.

Now

`(βi) = 2ϕi sinh ri,

so

`(βi) < 2ϕi sinh

(

arccosh

(

1 +
Area S

2ϕi

))

= 2ϕi

√

√

√

√

(

1 +
Area S

2ϕi

)2

− 1

< Area S + 2ϕi

< 2π(2g − 2 + n).
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1

Figure 3.7: βj as composition of τ1 and τ2

Thus the length of the boundary of the neighborhood Zi(ri) about pi, i = 1, . . . , n, is

bounded above by 2π(2g − 2 + n).

Starting from ri = 0, we let ri grow continuously (for all i simultaneously) until

one of the following cases occurs:

1. βj ceases to be simple for some j ∈ {1, . . . , n};

2. βj meets βk for some j 6= k.

Once one of these cases occurs, we fix all the ri. We will consider each case in turn.

Case 1. We view βj as the composition of two curves τ1 and τ2, which both have initial

and final points at the self-intersection of βj. If βj has multiple self-intersections, then

we choose one and let τ1 and τ2 be as in Figure 3.7.

We allow τ1 and τ2 to slide in their free homotopy classes on S \Σ until they reach

their minima. We have

`(G(τ1)) < `(τ1) < `(βj) < 2π(2g − 2 + n),

and similarly for `(G(τ2)). Note that it is possible that one of G(τ1) or G(τ2) is a cone

point (but not both, due to the restrictions on the signature of S), in which case the

nontrivial geodesic bounds a joker’s hat. We cut S open along those G(τi), i = 1, 2,

which are not cone points, and remove any resulting V -pieces or joker’s hats. Let S1
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be the (possibly empty) remaining connected component. Then

`(∂S1) < 4π(2g − 2 + n).

Case 2. Suppose that two boundary curves βj and βk meet, and that both βj and

βk are simple (if more than two simple boundary curves meet, choose two). Consider

the curve τ obtained by first traversing βj and then traversing βk, where the initial

and final points of both of these curves are at their intersection point. Note that τ

is homotopic to a simple closed curve and is not homotopic to a cone point, as S has

signature (g, n) 6= (0, 3). By Proposition 2.6.3 (i), τ is homotopic to a unique simple

closed geodesic. We have

`(G(τ)) < `(τ) = `(βj) + `(βk) < 4π(2g − 2 + n).

Cutting S open along this geodesic yields at least one joker’s hat. Let S1 denote

the (cone-)surface obtained by cutting S open in this way and removing any joker’s

hats that result. Then

`(∂S1) < 4π(2g − 2 + n).

We now restart the process; that is, we send out collars Zi(ri) from the remaining

cone points pi on S1 and let ri grow continuously from ri = 0 until one of the following

situations occurs:

1. βj ceases to be simple for some j ∈ {1, . . . , n};

2. βj meets βk for some j 6= k;

3. βj meets a boundary geodesic γi on S1.
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Once one of these cases occurs, we fix all the ri. Cases 1 and 2 are as above, and

if we let S2 be the (cone-)surface which results from cutting S1 open along the new

geodesics we find and removing all Y-pieces, V-pieces and joker’s hats, then

`(∂S2) < 8π(2g − 2 + n).

Case 3. Consider the curve τ obtained by first traversing βj and then traversing

γi, where the initial and final points of both of these curves are at their intersection

point. Note that τ is homotopic to a simple curve and is not homotopic to a cone

point; if it were, then pj would live on a joker’s hat that would have been removed at

the previous step. Thus, τ is homotopic to a unique simple closed geodesic. We have

`(G(τ)) < `(τ) = `(βj) + `(γi) < 2π(2g − 2 + n) + 4π(2g − 2 + n) = 6π(2g − 2 + n).

Cutting S1 open along G(τ) yields at least one V-piece. Let S2 be as defined above;

then

`(∂S2) < `(∂S1) + 2π(2g − 2 + n) < 6π(2g − 2 + n),

as `(G(τ)) < `(γi) + 2π(2g − 2 + n) and γi /∈ ∂M2.

We repeat the above process until all of the cone points on S have been removed

on V-pieces or joker’s hats. Note that at each step, after cutting our cone-surface

open along the geodesics we find and removing any Y-pieces, V-pieces and joker’s

hats, the length of the boundary of the resulting (cone-)surface increases by at most

4π(2g − 2 + n). To remove all n cone points requires m ≤ 2n geodesics and µ ≤ m

steps; thus, we have found γ1, . . . , γm such that

`(∂Sj) < 4πj(2g − 2 + n), j = 1, . . . , µ
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and

`(γk) < 4πk(2g − 2 + n), k = 1, . . . , m.

To obtain the remaining geodesics in our decomposition, we proceed by induction.

That is, we find a suitable simple closed geodesic in the interior of Sµ which is not

homotopic to a boundary component, cut Sµ open along this geodesic, remove any

Y -pieces, and let Sµ+1 be the resulting surface. To find such a geodesic, we create

tubular neighborhoods around all boundary geodesics and let the widths grow until

a critical case occurs; the area arguments are analogous to those in the induction for

compact Riemann surfaces of genus g ≥ 2 (see [6]).

Remark 3.3.2. The proof gives an explicit bound for the length of each partitioning

geodesic:

`(γk) < 4πk(2g − 2 + n),

where γk is the kth geodesic in a partition of S. For Lg,n we have thus proved the

following bound:

Lg,n < 4π(3g − 3 + n)(2g − 2 + n).

As another consequence of the proof of Theorem 3.3.1, we have the following

statement for admissible cone-surfaces with boundary.

Corollary 3.3.3. Let S be a compact admissible cone-surface of signature (g,m, n).

Then there exists a partition P = {γ1, . . . , γ3g−3+m+n} of S such that

`(γk) < 4πk(2g − 2 + n), k = 1, . . . , 3g − 3 +m + n.

Remark 3.3.4. Buser’s proof (see [6]) of Bers’ theorem for a compact Riemann

surface M finds the initial geodesic(s) in a partition of M in one of two ways. They
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are the geodesics of length ≤ 2arcsinh1, if any such geodesics exist; these geodesics

are known to be pairwise disjoint by the collar theorem for Riemann surfaces. If there

are no such geodesics on M , then the initial geodesic is one whose length is bounded

by an area argument involving the injectivity radius of the surface. The presence of

cone points prohibits the use of a similar initial argument for cone-surfaces, as the

injectivity radius on a cone-surface tends to zero as we approach any cone point.
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Chapter 4

Parametrizing Admissible

Cone-Surfaces

A compact Riemann surface of genus g ≥ 2 is parametrized by its underlying confor-

mal structure, which can be described using a set of 6g− 6 parameters. As observed

in [10, p.85], “Two dimensional hyperbolic cone-manifolds are parametrized by their

underlying conformal structures (including position of singular points) and cone an-

gles.” Such parametrizations are useful in the study of Teichmüller space (e.g. [6]).

We give an explicit description of the necessary parameters in the case of admissible

cone-surfaces.

4.1 Twist Parameters

Twist parameters appear when we paste two pairs of pants (or a pair of pants to

itself) along two boundary geodesics of the same length. Pasting two Y -pieces gives

a compact Riemann surface of signature (0, 4, 0), called an X-piece. Pasting two

V -pieces results in an admissible cone-surface of signature (0, 2, 2), which we call a
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W-piece. Pasting two joker’s hats results in an admissible cone-surface of signature

(0, 0, 4), called an H-piece. Pasting a Y -piece and a V -piece along two boundary

geodesics of the same length yields a U-piece (signature (0, 3, 1)), pasting a Y -piece

and a joker’s hat yields a W -piece, and pasting a V -piece and a joker’s hat yields a

Z-piece (signature (0, 1, 3)).

Let B, B′ be two pairs of pants with boundary geodesics γi, γ
′
i parametrized on

S1, where i = 1, 2, 3 if B [B ′] is a Y -piece, i = 1, 2 if B [B ′] is a V -piece, and i = 1

if B [B′] is a joker’s hat. The parametrizations of the boundary are as given in the

pasting conditions. Suppose that `(γ1) = `(γ′1), and fix a real number α. We can

then paste γ1 and γ′1 via the identification

γ1(t) = γ′1(α− t) =: γα(t), t ∈ S
1. (4.1)

Here α is the twist parameter, and the resulting admissible cone-surface is one of

those defined above. We denote by Xα the ordered pair (α, Y + Y ′ mod(4.1)), and

similarly for the remaining pieces; this is the X-piece marked with α.

The following proposition in the case of X-pieces is proved in [6].

Proposition 4.1.1. Every X-piece [W-piece, H-piece, U-piece, Z-piece] can be ob-

tained by the above construction.

Proof. Let S denote a given X-, W-, H-, U- or Z-piece. By Proposition 2.6.5, there

exists at least one homotopically non-trivial simple closed curve ν on S that is not

homotopic to a boundary curve. Replacing ν by the simple closed geodesic in its free

homotopy class, then cutting along this geodesic, one obtains a decomposition of S

into two pairs of pants.
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4.2 Cubic Pseudographs

Cubic graphs form the combinatorial skeletons of compact Riemann surfaces, and

are a useful way of encoding and revealing information about these surfaces. The

analogous objects for admissible cone-surfaces will be called cubic pseudographs, as

they retain the 3-regular quality of cubic graphs but no longer satisfy the definition of

a graph. We will give a brief description of cubic pseudographs, followed by an upper

bound on the number of pairwise nonisomorphic cubic pseudographs on admissible

cone-surfaces of signature (g, n) ≥ (1, 1).

A pseudograph G consists of a set of vertices, a set of edges, and a set of half-

edges. There will be three types of vertices in our cubic pseudographs: Y-vertices,

V-vertices, and J-vertices. A Y-vertex is a vertex with three emanating half-edges,

all of which are free to be glued to other half-edges. It is the combinatorial skeleton

for a Y-piece. Similarly, a V-vertex is the combinatorial skeleton for a V-piece. A

V-vertex has three emanating half-edges, but only two of these are allowed to be

glued to other half-edges. The half-edge which cannot get glued is distinguished by

a bar at the end in the figures. Only one of the three half-edges emanating from a

J-vertex can be glued to another half-edge; a J-vertex is the skeleton for a joker’s

hat. An edge in a pseudograph G will consist of the union of two half-edges, and will

connect either two distinct vertices or a vertex with itself. Note that since all types

of vertices have three emanating half-edges, G will be 3-regular. However, the barred

half-edges violate the definition of a graph, in which every half-edge is paired with

another to form a full edge. We assume that our pseudographs are connected, i.e.

given two distinct vertices v1 and v`, there is a sequence of vertices v1, v2, . . . , v`−1, v`

such that each pair of successive vertices vi, vi+1 in the list is joined by an edge. See

Figure 4.1 for examples of cubic pseudographs and their associated cone-surfaces.
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Figure 4.1: Pseudographs and their associated cone-surfaces

Fix a finite cubic pseudograph G. Since G is the combinatorial skeleton for an

admissible cone-surface, we know from the collar theorem that G will consist of 2g−

2+n vertices and will contain 3g−3+n edges. These edges correspond to the geodesics

needed to decompose an arbitrary admissible cone-surface into pairs of pants.

We denote the vertices of G by v1, . . . , v2g−2+n; a vertex vi has three emanating

half-edges ci1, ci2, and ci3. If ciµ and chν are two half-edges which constitute an edge

ck, we write ck = (ciµ, chν). The half-edges that are not eligible to be glued are

labelled ej, j = 1, . . . , n. So we can fully describe G by the list

ck = (ciµ, chν) , ej, k = 1, . . . , 3g − 3 + n, j = 1, . . . , n. (4.2)

It will sometimes be convenient to view the list (4.2) as the graph. Given a collection

ciµ, chν, ej, we can write a list of ordered triples in which each ciµ, chν and ej appears

exactly once. This list defines a cubic pseudograph; we say that the graph is admissible

if it is connected.

Definition 4.2.1. An admissible list as in (4.2) is called a marked cubic pseudo-

graph.

We say that two marked cubic pseudographs are isomorphic if there is a bijection
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between their vertex sets which preserves adjacency.

The next theorem gives a bound on the number of pairwise nonisomorphic cu-

bic pseudographs of a given size. Note that we restrict to pseudographs which are

composed of Y- and V-vertices only. From Theorem 3.1.2, we know that every ad-

missible cone-surface of signature (g,m, n) > (0, 2, 1) can be decomposed into Y - and

V -pieces, so that this theorem is of interest. The restriction is for purposes of the

proof; we do not know a way to extend the combinatorial arguments to the setting

of three types of vertices.

Theorem 4.2.2. Let G(g, n) denote the number of pairwise nonisomorphic cubic

pseudographs with 2g − 2 + n Y - and V -vertices, g > 0, n > 0, and no J-vertices.

Then

G (g, n) < 1.5 · (2g)2g+n−1 ·
(

4g

e

)g

(4.3)

Proof. We want to construct cubic pseudographs by gluing together a collection

of Y- and V-vertices. Since we have at least one cone point on our surface, we can

always begin with one V-vertex (which, if the two free half-edges were glued, would

be the skeleton of a pointed torus). We can end with a V-vertex or a Y-vertex. We

will consider each case in turn.

First assume that we begin with one V-vertex and end with a Y-vertex. We have

two free half-edges on the initial piece; attaching a Y-vertex causes the number of free

half-edges to increase by 1, while attaching a V-vertex does not change the number of

free half-edges. So the number of ways we could have glued our collection of vertices,

beginning with a V-vertex and ending with a Y-vertex, to reach this point is at most

2 · 3 · · · (2g − 1), with some n − 1 (not necessarily distinct) terms in this product

repeated. Now assume that we begin and end with a V-vertex. Then our product
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looks like 2 · 3 · · · 2g, with n− 2 nonunit exponents. The product

2 · 3 · · ·2g (4.4)

with n− 1 nonunit exponents is at least twice as big as the above products; we take

this as our upper bound for the number of distinct possibilities at this point.

The next step is to estimate the sum of the products of 2, 3, . . . , 2g where each

product has 2g+ n− 2 terms and each number 2, 3, . . . , 2g appears in the product at

least once. This number is a function of g and n; denote it by C(g, n). We have that

C(g, n) is the coefficient of x2g+n−2 in the product

(2x+(2x)2+(2x)3+· · · )(3x+(3x)2+(3x)3+· · · ) · · · (2gx+(2gx)2+(2gx)3+· · · ), (4.5)

since to get a product with 2g+n−2 terms we take at least one term that contributes

a 2, at least one term that contributes a 3, and so on, taking a total of 2g + n − 2

terms. We can rewrite (4.5) as

C(g, n) = [x2g+n−2]
2x

1 − 2x
· 3x

1 − 3x
· · · (2g)x

1 − (2g)x
, (4.6)

where [x2g+n−2] denotes the coefficient of x2g+n−2 in the product. Collecting terms in
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this equation gives

C(g, n) = (2g)! [x2g+n−2]
x2g−1(1 − x)

(1 − x)(1 − 2x)(1 − 3x) · · · (1 − (2g)x)

= (2g)! [x2g+n−1]
x2g

(1 − x)(1 − 2x)(1 − 3x) · · · (1 − (2g)x)

− (2g)! [x2g+n−1]
x2g · x

(1 − x)(1 − 2x)(1 − 3x) · · · (1 − (2g)x)

= (2g)! (S(2g + n− 1, 2g) − S(2g + n− 2, 2g))

≤ (2g)!S(2g + n− 1, 2g)

where the S(m, k) are the Stirling numbers of the second kind (see [9]). We can

estimate the right side by (2g)! · (2g)2g+n−1

(2g)!
. Hence C(g, n) ≤ (2g)2g+n−1. At this point,

then, there are at most (2g)2g+n−1 ways to paste together our set of 2g− 2 Y-vertices

and n V-vertices.

Next we need to paste together the remaining free half-edges, of which there are

2g. Select a free half-edge. There are (2g − 1) possible gluing partners for this half-

edge. We choose one and glue. There are now (2g− 2) free half-edges; we choose one

and glue it to one of the remaining (2g − 3). Continuing in this manner, we see that

there are

(2g − 1)(2g − 3) · · ·3 · 1

ways to glue the 2g half-edges. Hence

G(g, n) ≤ (2g)2g+n−1 · (2g − 1)!

2g−1(g − 1)!
(4.7)

We will now simplify the right-hand side of (4.7). First note that for g = 1, the

factorial expression is equal to 1. Observe that given any finite number of (indistin-

guishable) V-vertices and no Y-vertices, there is exactly one way to glue them. So
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this bound is sharp for g = 1. We will henceforth assume that g > 1.

In order to simplify the right-hand side of (4.7), we use the version of Stirling’s

formula which says

√
2πn

(

n

e

)n

≤ n! ≤
√

2πn
(

n

e

)n+ 1
12n

.

This gives

(2g)2g+n−1 · (2g − 1)!

2g−1(g − 1)!
≤ (2g)2g+n−1 ·

√

2π(2g − 1)
(

2g−1
e

)2g−1+ 1
12(2g−1)

2g−1
√

2π(g − 1)
(

g−1
e

)g−1 (4.8)

For the moment, we will restrict our attention to the last term. We have

√

2π(2g − 1)
(

2g−1
e

)2g−1+ 1
12(2g−1)

2g−1
√

2π(g − 1)
(

g−1
e

)g−1 = e−g · (2g−1)2g−1/2

2g−1(g−1)g−1/2 ·
(

2g−1
e

) 1
12(2g−1)

=
√

2
eg · (2g−1)2g

(2g−2)g ·
√

2g−2
2g−1

·
(

2g−1
e

) 1
12(2g−1)

≤
√

2
eg · (2g)2g

gg ·
√

2g−2
2g−1

·
(

2g−1
e

)
1

12(2g−1)

since 2g − 1 < 2g and g > 1 implies 1
2g−2

≤ 1
g
. Also note that 0 <

√

2g−2
2g−1

< 1 since

2g − 2 < 2g − 1 for all g and 2g−2
2g−1

> 0 for all g > 1. We have

√

2π(2g − 1)
(

2g−1
e

)2g−1+ 1
12(2g−1)

2g−1
√

2π(g − 1)
(

g−1
e

)g−1 ≤
√

2
eg · 22g · g2g

gg ·
(

2g−1
e

) 1
12(2g−1)

= gg ·
√

2 ·
(

4
e

)g ·
(

2g−1
e

) 1
12(2g−1)

We now estimate
(

2g−1
e

) 1
12(2g−1) =

(

2g−1
e

) 1
24g−12 . We seek a constant κ such that

(i) κ ≥
(

2g−1
e

) 1
24g−12 for g = 2
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and

(ii) F (g) = κ24g−12 −
(

2g−1
e

)

is increasing, i.e.

dF

dg
= ln κ · κ24g−12 · 24 − 2

e
≥ 0 ∀g ≥ 2

or

ln κ · κ24g−12 ≥ 1

12e
∀g ≥ 2

We find that κ ≈ 1.00274 satisfies (i). Since κ > 1, we know that κ24g−12 increases

with g; condition (ii) reduces to

(ii′) ln κ · κ36 ≥ 1
12e

.

Note that the above value of κ does not satisfy (ii′). By inspection, we find that

κ = 1.02 satisfies both conditions. Thus

√

2π(2g − 1)
(

2g−1
e

)2g−1+ 1
12(2g−1)

2g−1
√

2π(g − 1)
(

g−1
e

)g−1 ≤ gg · 1.02 ·
√

2 ·
(

4

e

)g

. (4.9)

Substituting (4.9) into (4.8) gives

(2g)2g+n−1 · (2g − 1)!

2g−1(g − 1)!
≤ (2g)2g+n−1 · gg · 1.02 ·

√
2 ·
(

4

e

)g

Note that 1.02 ·
√

2 ≈ 1.4425, so that

(2g)2g+n−1 · (2g − 1)!

2g−1(g − 1)!
< 1.5 · (2g)2g+n−1 ·

(

4g

e

)g

(4.10)

as desired. �
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4.3 The Admissible Cone-Surfaces

We now want to construct admissible cone-surfaces of signature (g, n) using marked

cubic pseudographs as our underlying combinatorial skeletons. See [6, §3.6] for the

construction in the case of compact Riemann surfaces.

Fix a marked cubic pseudograph G with vertices v1, . . . , v2g−2+n, edges

c1, . . . , c3g−3+n, and half-edges e1, . . . , en, where G is described by the list

ck = (ciµ, chν) , ej, k = 1, . . . , 3g − 3 + n, j = 1, . . . , n

as in (4.2). Then choose

L = (`1, . . . , `3g−3+n) ∈ R
3g−3+n
+ ,

A = (α1, . . . , α3g−3+n) ∈ R
3g−3+n,

N = (2ϕ1, . . . , 2ϕn) ∈ In,

where I = (0, π), and define an admissible cone-surface F (G,L,A,N) as follows. To

each vertex vi with half-edges ci1, ci2, ci3, we associate a pair of pants with the appro-

priate number of boundary geodesic(s) γiµ and of cone angle(s) 2ϕj. All boundary

geodesics are parametrized on S1 = R/[t 7→ t + 1], where parametrizations of the

boundary are as given in the pasting conditions. We have

`k = `(γk) = `(γiµ) = `(γhν), k = 1, . . . , 3g − 3 + n.

This is possible by Theorems 2.5.3 and 2.5.6, and by the comments following the

construction of a joker’s hat.

Let P represent a Y-piece, V-piece, or joker’s hat. Then we can paste Pi and Ph
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together along γiµ and γhν via the identification

γiµ(t) = γhν(αk − t) := γk(t), t ∈ S
1. (4.11)

After pasting all pairs of pants associated to our fixed marked cubic pseudograph G

along the appropriate boundary geodesics, we have

F = F (G,L,A,N) = P1 + · · ·+ P2g−2+n mod(4.11).

Note that G is a connected graph, so F is connected. Also, the boundary geodesics

of our pairs of pants were oriented such that F is orientable. Thus F is an admissible

cone-surface of signature (g, n) with cone angles 2ϕ1, . . . , 2ϕn.

Definition 4.3.1. The parameters (L,A) are the Fenchel-Nielsen coordinates of the

admissible cone-surface F (G,L,A,N).

Note that there is a length parameter and a twist parameter associated to each

boundary geodesic γ1, . . . , γ3g−3+n; these geodesics will be called the coordinate

geodesics of F .

Maskit [22] has studied Fenchel-Nielsen coordinates on hyperbolic orbifolds, in

the context of connecting Fenchel-Nielsen coordinates on an arbitrary hyperbolic

orbifold to matrix generators for the corresponding Fuchsian group. He defines a

Fenchel-Nielsen system as the signature (including the orders of the cone points) of

the orbifold O, together with a table which lists, for each pair of pants in O, the

coordinate geodesics or cone points to which the boundary elements of the pair of

pants correspond. The Fenchel-Nielsen coordinates are defined as the lengths and

twists about the coordinate geodesics. For our purposes, a Fenchel-Nielsen system on

an admissible cone-surface F (G,L,A,N) will consist of the underlying cubic pseudo-
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graph G, the cone angles as given by N , and the Fenchel-Nielsen coordinates (L,A).

Using such a system, we can prove the following theorem:

Theorem 4.3.2. Let G be a fixed marked cubic pseudograph with 2g− 2+n vertices,

and let N be a fixed set of n cone angles. Then F (G,L,A,N) runs through all

admissible cone-surfaces of genus g with n cone points having cone angles in N .

The proof of this theorem is a straightforward extension of the proof of the analo-

gous result for compact Riemann surfaces. In order to sketch the proof, we must give

the following background (see [6, p. 83]).

Definition 4.3.3. Let A and B be two topological spaces, and let φ0, φ1 : A → B

be homeomorphisms. We say that φ0 and φ1 are isotopic if there exists a continuous

map ι : [0, 1] × A→ B such that

1. ι(0, ) = φ0;

2. ι(1, ) = φ1; and

3. ι(s, ) : A→ B is a homeomorphism for each s ∈ [0, 1].

In the context of admissible cone-surfaces A and B with a map φ : A→ B, we say

that φ is a homeomorphism if it is a homeomorphism of the underlying topological

spaces of A and B, and sends cone points in A to cone points in B. With these

definitions in hand, we can now state

Theorem 4.3.4. Let φ : S → R be a homeomorphism of admissible cone-surfaces,

and let γ1, . . . , γN be pairwise disjoint, simple closed geodesics on S. Then there exists

a homeomorphism φ′ isotopic to φ such that the curves φ′(γ1), . . . , φ
′(γN) are closed

geodesics on R.
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The proof of this theorem in the case of Riemann surfaces relies on a theorem of

Baer-Zieschang (see [6, p. 411]) and the fact that non-trivial simple closed curves

are homotopic to simple closed geodesics. The theorem of Baer-Zieschang holds for

surfaces with boundary; one can remove a small neighborhood of each cone point in

the cone-surface and perform the isotopies on the resulting surface with boundary.

By Proposition 2.6.3, the simple clsoed curves involved are again homotopic to simple

closed geodesics. We now sketch the proof of Theorem 4.3.2.

Proof. (Sketch) Fix a base surface F0 = F (G,L0, A0, N). Let S be any admissible

cone-surface of genus g with n cone points having cone angles in N . Then there exists

a homeomorphism φ : F0 → S. By Theorem 4.3.4, we can choose φ such that the

images φ(γ1), . . . , φ(γ3g−3+n) of the coordinate geodesics γ1, . . . , γ3g−3+n of F0 form a

system of pairwise disjoint simple closed geodesics on S. Thus φ must map pairs of

pants on F0 onto pairs of pants on S. These define S as a surface S = F (G,L,A,N)

for appropriate L and A. Note that φ is a homeomorphism, so G is the underlying

graph of S.

We conclude our discussion of Fenchel-Nielsen parameters by giving a large family

of pairwise non-isometric examples of admissible cone-surfaces. We follow Buser [6,

p.84]. Let G be the set of all pairwise non-isomorphic marked cubic pseudographs

with 2g− 2+n vertices (where the restrictions on g and n are as for admissible cone-

surfaces). We can view each G ∈ G as a list as in (4.2). Fix a set N of n admissible

cone-angles. Then, for each fixed G ∈ G, we define

F(G) = {F (G,L,A,N) | 0 < `1 < · · · < `3g−3+n < 2arcsinh(cosϕ),

0 < α1, . . . , α3g−3+n <
1

4
},
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where L = (`1, . . . , `3g−3+n), 2ϕ is the largest cone angle in the set N , and A =

(α1, . . . , α3g−3+n). We define

Fg,n = ∪G∈GF(G).

The surfaces in Fg,n are pairwise non-isometric.

Proof. Suppose that F = F (G,L,A,N) ∈ Fg,n. We want to recover G,L and A from

the intrinsic geometry of F . We begin with the lengths of the coordinate geodesics.

By Corollary 3.2.2, the coordinate geodesics γ1, . . . , γ3g−3+n are the only geodesics on

F of length less than 2arcsinh(cosϕ). Thus, by finding all geodesics on F of length

less than 2arcsinh(cosϕ) and arranging the lengths of these geodesics in increasing

order, we find L. Note that this process also recovers the graph G, as we now know

the location and types of the various pairs of pants.

It remains to determine A. Consider a fixed γk on F . It is the boundary of one

or more pairs of pants of F , and by Propositions 2.5.2, 2.5.5 and 2.6.3, there exist

unique simple perpendiculars between γk and the other boundary geodesics or cone

points of these building blocks. Each pair of these perpendiculars on a given building

block decomposes γk into two arcs of equal length. By hypothesis, 0 < αk <
1
4
. Thus

the minimum distance among the intersection points of the four perpendiculars with

γk determines αk. Hence we know A.
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Chapter 5

Orbifolds

We now specialize to the study of cone-manifolds which are orbifolds, that is, whose

cone half-angles are of the form π
k
, for k an integer greater than 1.

5.1 Coordinate Charts

In Chapter 2, we studied usual charts and conical charts on cone-surfaces. On or-

bisurfaces, we can define a variation of these charts which carries more information;

namely, it tells us about the local group action at the cone point. In the following def-

initions and exposition, we consider orbifolds of arbitrary dimension. Good references

for this material include Chapter 2 of [10], [32] and [28].

Definition 5.1.1. Let X be a Hausdorff space, and let U be an open set in X. An

orbifold coordinate chart over U is a triple (U,Γ\Ũ , π) such that:

1. Ũ is a connected open subset of Rn,

2. Γ is a finite group of diffeomorphisms acting on Ũ with fixed point set of codi-

mension at least two, and
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3. π : Ũ → U is a continuous map which induces a homeomorphism between Γ\Ũ

and U . We require π ◦ γ = π for all γ ∈ Γ.

Now suppose that U and U ′ are two open sets in a Hausdorff space X with U ⊂ U ′.

Let (U,Γ\Ũ , π) and (U ′,Γ′\Ũ ′, π′) be charts over U and U ′, respectively.

Definition 5.1.2. An injection λ : (U,Γ\Ũ , π) ↪→ (U ′,Γ′\Ũ ′, π′) consists of an open

embedding λ : Ũ ↪→ Ũ ′ such that π = π′ ◦ λ, and for any γ ∈ Γ there exists γ ′ ∈ Γ′

for which λ ◦ γ = γ ′ ◦ λ.

Note that the correspondence γ 7→ γ ′ defines an injective homomorphism of groups

from Γ into Γ′.

Definition 5.1.3. A smooth orbifold (X,A) consists of a Hausdorff space X together

with an atlas of charts A satisfying the following conditions:

1. For any pair of charts (U,Γ\Ũ , π) and (U ′,Γ′\Ũ ′, π′) in A with U ⊂ U ′ there

exists an injection λ : (U,Γ\Ũ , π) ↪→ (U ′,Γ′\Ũ ′, π′).

2. The open sets U ⊂ X for which there exists a chart (U,Γ\Ũ , π) in A form a

basis of open sets in X.

Given an orbifold (X,A), we call the topological space X the underlying space of

the orbifold. Henceforth orbifolds (X,A) will be denoted simply by O. We now give

some examples of orbifolds.

1. Let Γ be a group acting properly discontinuously on a manifold M with fixed

point set of codimension at least two. Then the quotient space O = Γ\M is an

orbifold. Since O can be expressed as a global quotient (that is, as a subset of

Rn modulo the action of a discrete group), it is called a good or global orbifold.

If M is a surface, then O is an orbisurface.
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2. Consider the orbisurface whose underlying space is the sphere S2, and which

has one cone point. A neighborhood of this cone point is modelled on Zn\R2,

where Zn is the group of rotations of order n. We call this orbisurface the Zn-

teardrop. Unlike the previous example, the Zn-teardrop cannot be covered by

a manifold and thus is an example of a bad orbifold (see [29]).

3. Consider the orbisurface with underlying space S2 and two cone points, called

a football. If both cone points have the same order (that is, they have the same

isotropy groups), then this orbisurface can be realized as a global quotient.

Otherwise, it is a bad orbisurface.

4. Let ∆ be an equilateral triangle in the Euclidean plane. Consider the group

of isometries generated by reflections in the lines which contain the three sides

of ∆, and let ∆∗ be the orientation-preserving subgroup of this group. Then

the quotient ∆∗\R2 is an orbisurface (often called a turnover) with three cone

points. The underlying space of this orbisurface is the sphere S2, and each of

the cone points has isotropy group Z3.

We will be interested in orbisurfaces which have a hyperbolic structure. The

construction of a Riemannian metric on an orbifold is as in the manifold case, with

the metric being defined locally via coordinate charts and patched together using a

partition of unity. In addition, the metric must be invariant under the local group

actions. A smooth orbifold with a Riemannian metric is a Riemannian orbifold.

Recall that an orbisurface with a hyperbolic metric of constant curvature -1 will be

called a Riemann orbisurface. Every Riemann orbisurface arises as a global quotient

of the hyperbolic plane by a discrete group of isometries (see [29]).

An orbifold O is said to be locally orientable if it has an atlas in which every

coordinate chart (U,Γ\Ũ , π) is such that Γ is an orientation-preserving group. If all
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injections as in Definition 5.1.2 are induced by orientation-preserving maps, then O

is orientable. If a compact orientable Riemann orbisurface has cone points of order

three and higher, it will be called an admissible Riemann orbisurface. Cone points of

order two are problematic for a variety of reasons, including the possibility that they

can be arbitrarily close to each other. Further reasons for excluding them in certain

situations will be clear from the relevant proofs in the last chapter.

5.2 Fuchsian Groups

In Beardon [1], a careful study of the geometry of discrete groups is undertaken. In

particular, he looks at Fuchsian groups, which may be considered as discrete groups

of isometries of the hyperbolic plane. To every Fuchsian group G, we can associate

its Dirichlet polygon; a Dirichlet polygon centered at a point w ∈ H is the set of all

points which are, among all their images under the action of G, closest to w. Beardon

proves the following theorem about such a polygon P ([1, Thm. 9.3.3]):

Theorem 5.2.1. The set of side-pairing elements G∗ of P generate G.

The theorem actually holds for an entire class of polygons of which the Dirichlet

polygon is a member; we now give the necessary background for the proof. First,

note that P is also a fundamental domain for G. That is, P is a domain whose

boundary has zero area with respect to the hyperbolic metric, and there is some

fundamental set F with P ⊂ F ⊂ P̃ , where P̃ represents the closure of P relative to

the hyperbolic plane H. (A fundamental set for G is a subset of the hyperbolic plane

that contains exactly one point for every orbit of the group in the plane.) We say that

a fundamental domain D is locally finite if and only if every compact subset of the

hyperbolic plane meets only finitely many images of D̃ under the action of G. The
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following theorem gives the relationship between a locally finite fundamental domain

for G and the generators of G:

Theorem 5.2.2. Let D be any locally finite fundamental domain for a Fuchsian group

G. Then

G0 = {g ∈ G|g(D̃) ∩ D̃ 6= ∅}

generates G.

Proof. We follow Beardon [1, Thm. 9.2.7]. Let Ĝ be the group generated by G0.

Clearly, Ĝ ⊂ G. It suffices to show that G ⊂ Ĝ, as then Ĝ = G and G0 generates G.

We work in the unit disc ∆. Since D is a fundamental domain for G, for every

z ∈ ∆ there is an element g ∈ G with g(z) ∈ D̃. Suppose that h(z) also lies in D̃.

Then h(z) ∈ D̃ and h(z) ∈ hg−1(D̃), so hg−1 ∈ G0. This gives equality of cosets, i.e.

Ĝh = Ĝg. Thus there exists a well-defined map φ : ∆ → G/Ĝ given by

φ(z) = Ĝg,

where g(z) ∈ D̃. We now use this map to show that G ⊂ Ĝ.

Fix z ∈ ∆. The local finiteness of D implies that there are finitely many images

g1(D̃), g2(D̃), . . . , gm(D̃) which contain z, and their union covers an open neighbor-

hood N of z. If w ∈ N , then w ∈ gj(D̃) for some j and

φ(w) = Ĝ(gj)
−1 = φ(z).

Thus every z ∈ ∆ has an open neighborhood N on which φ is constant.

In fact, we can easily see that any function φ with this property is constant on all

of ∆. Endow φ(∆) with the discrete topology. Since φ is a continuous function, φ(∆)
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is connected. Hence φ(∆) contains exactly one point. Thus φ is constant on ∆, and

φ(z) = φ(w) for all z, w ∈ ∆.

Fix g ∈ G. Let z ∈ D and w ∈ g−1(D). Then φ being constant on ∆ implies

Ĝ = φ(z) = φ(w) = Ĝg,

so that g ∈ Ĝ. Thus G ⊂ Ĝ.

If, in addition to being locally finite, a fundamental domain for a group G is

convex, we call it a convex fundamental polygon for G. Theorem 5.2.1 holds for all

convex fundamental polygons. The proof is as follows:

Proof. We follow Beardon [1]. By Theorem 5.2.2, it suffices to show that if h(P̃ )∩P̃ 6=

∅, then h ∈ G∗. Let w ∈ P̃ ∩ h(P̃ ). Then there exists an open neighborhood N

centered at w and elements h0(= id), h1, h2, . . . , ht in G such that h = hj for some

j 6= 0, and

w ∈ h0(P̃ ) ∩ · · · ∩ ht(P̃ );

N ⊂ h0(P̃ ) ∪ · · · ∪ ht(P̃ ).

Decreasing the radius of N if necessary, we can assume that N contains no vertices of

any hj(P̃ ) except possibly w and no sides of any hj(P̃ ) other than those that contain

w. Since the boundary of P is the union of the sides of P , ∂P in N consists of exactly

one side or two distinct sides with common endpoint w. Similarly, the boundary

of hj(P̃ ) in N , j = 1, . . . , t, consists of exactly one side or two distinct sides with

common endpoint w. So we can relabel and require that two consecutive polygons in

the list h0(P ) = P, h1(P ), h2(P ), . . . , ht(P ), P = h0(P ) have a side in common. Thus
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P̃ ∩h−1
j hj+1(P̃ ) is a geodesic segment of positive length, i.e. a side. So hj+1 = hjg for

some g ∈ G∗ and h is in the group generated by the side-pairing elements of P .

Beardon shows ([1, Thm. 9.4.2]) that a Dirichlet polygon P is in fact a convex

fundamental polygon for G. Thus every Fuchsian group G is generated by the side-

pairing elements of a Dirichlet polygon associated to it.

Note that since an admissible Riemann orbisurface O = G\H does not contain

any cone points of order 2, we do not have to worry about the case that s = s′,

or equivalently that a vertex is an interior point of a side. Thus we regard the

elliptic fixed points of G as vertices of P . Beardon ([1, p.225]) notes that P contains

representatives of all conjugacy classes of elliptic elements in G.

5.3 Finite Covers

A Riemann orbisurface can be thought of as a Riemann surface with cone points; it

is natural to ask whether there is a nice relationship between Riemann surfaces and

Riemann orbisurfaces. We have the following result:

Proposition 5.3.1. Every compact Riemann orbisurface is finitely covered by a com-

pact Riemann surface.

Our proof will rely on the following lemma of Selberg [30]:

Lemma 5.3.2. Let H be a finitely generated group of n by n matrices (they need not

be real, nor must H be discrete). Then H has a normal subgroup of finite index which

contains no element of finite order other than the identity.

Using this lemma, Proposition 5.3.1 is stated as a corollary to a version of

Poincaré’s polyhedron theorem in [10]; Jim Davis, Chris Judge and Kevin Pilgrim

62



[20] used a similar method, but without invoking Selberg’s lemma, to prove the re-

sult independently. Our proof of Proposition 5.3.1 differs from both of the above

approaches.

Proof. Let O be a compact Riemann orbisurface. Then we can write O = Γ\H, where

Γ is a subgroup of SL(2,R). The compactness of O implies that Γ is finitely generated

(see [2]). For there exists a compact subset K ⊂ H such that Γ.K = H. Since the

action of Γ on H is properly discontinuous, the set

E = {γ ∈ Γ| γ.K ∩K 6= ∅}

is finite. By Lemma 6.6 of [3], E is a generating set for Γ.

Now Lemma 5.3.2 implies that Γ has a normal subgroup Γ0 of finite index which

contains no elliptic elements. Thus Γ0\H is a compact Riemann surface, and Γ0\H

finitely covers Γ\H.

It is natural to ask whether there is a unique “smallest” cover of a compact

Riemann orbisurface by a compact Riemann surface. This is an open question.
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Chapter 6

Spectral Geometry of Orbifolds

6.1 The Laplace Spectrum

Our goal is to study the spectrum of the Laplace operator as it acts on smooth

functions on an orbifold. First, we must define what is meant by a smooth function.

Definition 6.1.1. Let O be a compact Riemannian orbifold. A map f : O → R is

a smooth function on O if for every coordinate chart (U,Γ\Ũ , π) on O, the lifted

function f̃ = f ◦ π is a smooth function on Ũ .

If O is a compact Riemannian orbifold and f is a smooth function on O, then

we define the Laplacian ∆f of f by lifting f to local covers. That is, we lift f to

f̃ = f ◦ π via a coordinate chart (U,Γ\Ũ , π). We denote the Γ-invariant metric on Ũ

by gij and set ρ =
√

det(gij). Then we can define

∆f̃ =
1

ρ

n
∑

i,j=1

∂

∂x̃i
(gij ∂f

∂x̃j
ρ).

We are really interested in the eigenvalues of the Laplace operator as it acts

on smooth functions. In analogy with the manifold case, Chiang ([8]) proved the
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following theorem:

Theorem 6.1.2. Let O be a compact Riemannian orbifold.

1. The set of eigenvalues λ in ∆f = λf consists of an infinite sequence 0 ≤ λ1 <

λ2 < λ3 < · · · ↑ ∞. We call this sequence the spectrum of the Laplacian on O,

denoted Spec(O).

2. Each eigenvalue λi has finite multiplicity.

3. There exists an orthonormal basis of L2(O) composed of smooth eigenfunctions

φ1, φ2, φ3, . . ., where ∆φi = λiφi.

The multiplicity of the ith eigenvalue λi is the dimension of the space of eigen-

functions with eigenvalue λi.

6.2 The Heat Equation

Much information about the relationship between the Laplace spectrum of an orbifold

O and the geometric properties of O can be gleaned by studying the heat equation:

∆F = −∂F
∂t
,

where F (x, t) is the heat at a point x ∈ O at time t.

With initial data f : O → R, F (x, 0) = f(x), a solution of the heat equation is

given by

F (x) =
∫

O
K(x, y, t)f(y)dy.
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Here K : O × O × R
∗
+ → R is a C∞ function given by the convergent series

K(x, y, t) =
∑

i

e−λitφi(x)φi(y). (6.1)

The eigenfunctions φi of ∆ are chosen such that they form an orthonormal basis

of L2(O), the square-integrable functions on O. We say that K is the fundamental

solution of the heat equation on O, or the heat kernel on O. The appropriate physical

interpretation is that K(x, y, t) is the temperature at time t at the point y when a

unit of heat (a Dirac delta-function) is placed at the point x at time t = 0.

By considering the asymptotic behavior of K as t→ 0, we can recover information

about the geometry of O. In this direction, Farsi showed (see [14]) that Weyl’s

asymptotic formula can be extended to orbifolds. In particular, she proved

Theorem 6.2.1. Let O be a closed orientable smooth Riemannian orbifold with eigen-

value spectrum 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . ↑ ∞. Then for the function N(λ) =
∑

λj≤λ 1 we

have

N(λ) ∼ (Vol Bn
0 (1))(Vol O)

λn/2

(2π)n

as λ ↑ ∞. Here Bn
0 (1) denotes the n-dimensional unit ball in Euclidean space.

This theorem implies that, in analogy with the manifold case, the Laplace spectrum

determines an orbifold’s dimension and volume.

By looking at the terms of the asymptotic expansion of the trace of the heat

kernel, Gordon, Greenwald, Webb and Zhu ([17]) have given the following obstruction

to isospectrality:

Theorem 6.2.2. Let O be a Riemannian orbifold with singularities. If M is a man-

ifold such that O and M have a common Riemannian cover, then M and O cannot

be isospectral.
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In particular, this implies that a hyperbolic orbifold with singularities is never isospec-

tral to a hyperbolic manifold.

We saw in Proposition 5.3.1 that every compact Riemann orbisurface is finitely

covered by a compact Riemann surface. A natural (and open) question is: Do isospec-

tral compact Riemann orbisurfaces have a common finite cover?

6.3 Obstructions to Isospectrality

We want to investigate further obstructions to isospectrality; our focus will be the case

of orbisurfaces. In analogy with the surface case, we can define the Euler characteristic

and state a Gauss-Bonnet theorem for orbisurfaces (see [33]).

Definition 6.3.1. Let O be an orbisurface with s cone points of orders m1, . . . , ms.

Then we define the (orbifold) Euler characteristic of O to be

χ(O) = χ(X0) −
s
∑

j=1

(1 − 1

mj
),

where χ(XO) is the Euler characteristic of the underlying (topological) space of O.

The Gauss-Bonnet theorem for orbifolds gives the usual relationship between

topology and geometry.

Theorem 6.3.2. (Gauss-Bonnet) Let O be a Riemannian orbisurface. Then

∫

O
KdA = 2πχ(O),

where K is the curvature and χ(O) is the orbifold Euler characteristic of O.

Note that we define the curvature of an orbifold O at a point x ∈ O with coordinate

chart (U,Γ\Ũ , π) to be the curvature at a lift x̃ ∈ Ũ of x.
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Combining the Gauss-Bonnet theorem with Weyl’s asymptotic formula, we see

that for an orbisurface with given curvature, the spectrum determines the orbifold

Euler characteristic. However, since the orbifold Euler characteristic involves both the

genus of the underlying surface and the orders of the cone points in the orbisurface,

it is not immediately clear that the spectrum determines the genus. This is still an

open question.

In the case of orientable orbisurfaces, Gordon, Greenwald, Webb and Zhu ([17])

show that the Euler characteristic can be recovered from the asymptotic expansion of

the trace of the heat kernel. Together with some computations for cone points, this

allows them to define a spectral invariant which determines whether an orbifold is a

football or teardrop and determines the orders of the cone points. In a similar vein,

we give the following obstructions to isospectrality.

Proposition 6.3.3. Fix g ≥ 1 and m ≥ 2. Let O be a compact orientable Riemann

orbisurface of genus g with exactly one cone point of order m. Let O ′ be in the class

of compact hyperbolic orientable orbifolds of genus g with cone points of order 2 and

higher, and suppose that O is isospectral to O′. Then O′ must be an orbisurface with

exactly one cone point, and its order is also m.

Proof. Since O is isospectral to O′, Theorem 6.2.1 implies that O′ is two-dimensional.

By Theorem 6.2.2, O′ must contain at least one cone point. We have χ(XO) = χ(XO′)

by hypothesis, and the observation following Theorem 6.3.2 implies that χ(O) =

χ(O′).

Suppose that O′ has one cone point of order n1. It follows that

1

m
=

1

n1
,
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or m = n1. Now suppose that O′ has two cone points of orders n1 and n2. Then

1

m
+ 1 =

1

n1
+

1

n2
.

But ni ≥ 2 for i = 1, 2, so 1
n1

+ 1
n2

≤ 1. This is a contradiction, hence O and O′ are

not isospectral. This argument is easily extended to the case when O′ is assumed to

have more than two cone points.

We can extend Proposition 6.3.3 to the case of two orbifolds with different under-

lying spaces.

Proposition 6.3.4. Let O be a compact orientable Riemann orbisurface of genus

g0 ≥ 0 with k cone points of orders m1, . . . , mk, where mi ≥ 2 for i = 1, . . . , k. Let

O′ be a compact hyperbolic orientable orbifold of genus g1 ≥ g0 with l cone points of

orders n1, . . . , nl, where nj ≥ 2 for j = 1, . . . , l. Let h = 2(g0 − g1). If l ≥ 2(k + h),

then O is not isospectral to O′.

Proof. Suppose O is isospectral to O′. As in the preceding proof, we have that O′

must be two-dimensional and contain at least one cone point. Also, χ(O) = χ(O′),

i.e.

2 − 2g0 − k +
1

m1
+ · · · + 1

mk
= 2 − 2g1 − l +

1

n1
+ · · · + 1

nl
.

So

1

m1

+ · · · + 1

mk

= 2(g0 − g1) + k − l +
1

n1

+ · · ·+ 1

nl

or equivalently

1

m1

+ · · ·+ 1

mk

≤ h+ k − l

2
.

But k + h ≤ l
2

by hypothesis, which implies that the sum of the reciprocals of the

orders of the cone points m1, . . . , mk is nonpositive. This is a contradiction.
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If we assume that h = 0, i.e. that g0 = g1, then we have the following special case of

Proposition 6.3.4.

Corollary 6.3.5. Fix g ≥ 0. Let O be a compact orientable Riemann orbisurface of

genus g with k cone points of orders m1, . . . , mk, mi ≥ 2 for i = 1, . . . , k. Let O′ be

a compact hyperbolic orientable orbifold of genus g with l ≥ 2k cone points of orders

n1, . . . , nl, nj ≥ 2 for j = 1, . . . , l. Then O is not isospectral to O′.

Note that in all of the above results, we have the hypothesis that O′ is hyperbolic.

In the usual case of surfaces, we know that any surface isospectral to a given one

of fixed constant curvature must have the same constant curvature. The proof of

this uses the asymptotic expansion of the trace of the heat kernel; in the case of

orbisurfaces, this expansion is more complicated and it is no longer clear that fixed

constant curvature is a spectral invariant.

6.4 Huber’s Theorem

Huber’s theorem is a powerful tool in the study of questions of isospectrality of

compact Riemann surfaces. It allows us to translate information about eigenvalues

into information about the geometry of the surface, and specifically about the lengths

of closed geodesics on the surface (see [6]).

Theorem 6.4.1. (Huber) Two compact Riemann surfaces of genus g ≥ 2 have the

same spectrum of the Laplacian if and only if they have the same length spectrum.

The length spectrum is the sequence of all lengths of all oriented closed geodesics on

the surface, arranged in ascending order.

The idea of the proof is as follows. First, a fundamental domain argument leads to

a length trace formula. The known eigenfunction expansion of the heat kernel as given
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in (6.1) is then plugged into this length trace formula to obtain the Selberg Trace

Formula. The Selberg Trace Formula contains information about the eigenvalues on

one side and information about the lengths of closed geodesics and the area of the

Riemann surface on the other; it is then a matter of showing that the eigenvalues

determine the lengths of the closed geodesics and vice versa. Further background and

the case of the Selberg Trace Formula for compact hyperbolic manifolds can be found

in Randol (in [7]). Other sources for the Riemann surface case include [6] and [27].

We want to extend Huber’s theorem to the class of admissible Riemann orbisur-

faces. To begin, we need to exhibit a Selberg Trace Formula for such objects. We

initially follow the development of Randol (in [7]) and Pitkin [27], then, following

Hejhal [19], comment on the necessary modifications in the case of admissible Rie-

mann orbisurfaces. We begin with some preliminaries.

Definition 6.4.2. A function f(z, w) : H× H → R is said to be point-pair invariant

if it only depends on the hyperbolic distance between z and w.

Let k(z, w) = k(d(z, w)) ∈ C∞
c (R) be an even function which is point-pair invari-

ant. Then we can define an integral operator K on C∞(H) by

Kf(z) =
∫

H

k(z, w)f(w)dµ(w), (6.2)

where dµ(w) is the usual area element on the upper-half plane with the Poincaré met-

ric. Arguments involving radial eigenfunctions and the radialization of an arbitrary

function give the following relationship between K and ∆:

Proposition 6.4.3. Let φ be any eigenfunction of ∆ on H, with ∆φ = λφ. Then φ

is also an eigenfunction of any integral operator K which is generated by a point-pair
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invariant k(z, w). Furthermore, there is a function h such that

Kφ = h(λ)φ.

The point here is that h(λ) has no dependence on φ, which means that we can choose

any eigenfunction of ∆ with eigenvalue λ and use it to compute h(λ). Fix s ∈ C and

consider the function ys = es log y. Since the Laplacian in the upper half-plane model

for H is given by

∆ = y2

(

∂2

∂x2
+

∂2

∂y2

)

,

the reader can check that

∆ys = s(1 − s)ys;

that is, ys is an eigenfunction of the Laplacian with eigenvalue s(1 − s). Note that

s(1 − s) varies over C as s does. Setting s = 1
2

+ ir, we see that if λ = s(1 − s) is an

eigenvalue, then λ = r2 + 1
4
. Thus we can think of h as a function of r.

Now consider a function f ∈ L2(Γ\H). We can lift f to an automorphic function

on H, meaning that f(γz) = f(z) for γ ∈ Γ. Note that f is L2 on compact subsets

of H. Conversely, if we have a function on H which is L2 on compact sets and

automorphic with respect to Γ, then we can view f as an L2 function on Γ\H.

Taking k ∈ C∞
c (R) to be an even point-pair invariant kernel as before, we can

define

K(z, w) =
∑

γ∈Γ

k(z, γw),

which is a finite sum for specified z and w. It can be shown that K(z, w) is a

symmetric kernel, and if K̃ is the integral operator on L2(Γ\H) generated by K, then

the eigenfunctions of ∆ are also eigenfunctions of K̃. That is,
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Proposition 6.4.4. Let φ0, φ1, . . . be an orthonormal basis of eigenfunctions for ∆,

with corresponding eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · . Then

K̃φn = h(rn)φn, ∀n = 0, 1, . . . .

Recall that λn = 1
4
+ r2

n. As a corollary of this proposition, we can find an expression

for K(z, w) in terms of h and the eigenfunctions φn. In fact, we can replace k(z, w)

by a more general function L(z, w) = L(Q(z, w)), where L(ρ) ∈ C∞
c ([0,∞)) and

Q(z, w) =
|z − w|2
=z=w .

Corollary 6.4.5. We have

∑

γ∈Γ

L(z, γw) =
1

2

∑

n

h(rn)φn(z)φn(w) (6.3)

in the L2-sense, where all roots rn are counted in the sum on the right side.

It can further be shown that this expansion is valid pointwise, and that the sum on

the right side converges uniformly and absolutely. By setting w = z and integrating

over a nice fundamental domain for Γ\H, we get the expression

∑

n

h(rn) = 2
∑

γ∈Γ

∫

F
L(z, γz)dµ.

Recall that such a nice fundamental domain, with sides identified in pairs and elliptic

elements represented by vertices, exists ([1]).

We obtain the Selberg Trace Formula by expanding this integral term-by-term,

where the expansion is over the different types of possible conjugacy classes (in our

case, trivial, elliptic, and hyperbolic). In this expansion, the Fourier transform of
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h(r), given by

g(u) =
1

2π

∫ ∞

−∞
h(r)e−irudr,

will appear. We can state the Selberg Trace Formula in terms of functions h(r)

and g(u) which are not required to have compact support; namely, h(r) satisfies the

following (weaker) conditions:

Assumption 6.4.6.

• h(r) is an analytic function on |Im(r)| ≤ 1
2

+ δ;

• h(−r) = h(r);

• |h(r)| ≤M [1 + |Re(r)|]−2−δ.

The numbers δ and M are some positive constants.

Hejhal [19] obtains the following version of the Selberg Trace Formula for the case

of interest:

Theorem 6.4.7. Suppose that

• Γ ⊂ PSL(2,R) is a Fuchsian group with compact fundamental region;

• h(r) satisfies Assumption 6.4.6;

• {φn}∞n=0 is an orthonormal eigenfunction basis for L2(Γ\H).

Then

∞
∑

n=0

h(rn) =
µ(F )

4π

∫ ∞

−∞
rh(r) tanh(πr)dr

+
∑

{R}
elliptic

1

2m(R) sin θ(R)

∫ ∞

−∞

e−2θ(R)r

1 + e−2πr
h(r)dr

+
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 −N(P )−1/2
g[lnN(P )], (6.4)
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where all the sums and integrals in sight are absolutely convergent.

The first and last terms on the right side of (6.4) match the terms which appear

in the Selberg Trace Formula for compact Riemann surfaces, where µ(F ) is the area

of a fundamental region of Γ, N(P ) is the norm of a hyperbolic element P and Pc is a

primitive hyperbolic element with P = P k
c for some k ≥ 1. Every hyperbolic element

P in PSL(2,R) is conjugate to a dilation z 7→ mz,m > 1; we call m the norm of

P and denote it by N(P ). A primitive hyperbolic element is one which cannot be

written as a nontrivial power of another hyperbolic element. Note that ([19, Prop.

2.3])

inf

z ∈ H
d(z, T z) = lnN(T ),

where d is the distance on H. The infimum is realized by all points z which lie on

the geodesic in H which is invariant under the action of T . In the sum over elliptic

conjugacy classes, m(R) denotes the order of the centralizer (in Γ) of a representative

R and θ(R) represents the angle of rotation. We have Tr(R) = 2 cos θ(R), and

0 < θ < π.

In the proof of our partial extension of Huber’s theorem, we will need the following

results of Stanhope [32].

Theorem 6.4.8. Let S be a collection of isospectral orientable compact Riemannian

orbifolds that share a uniform lower bound κ(n−1), κ real, on Ricci curvature. Then

there are only finitely many possible isotropy types, up to isomorphism, for points in

an orbifold in S.

Theorem 6.4.9. Let isolS be a collection of isospectral Riemannian orbifolds with

only isolated singularities that share a uniform lower bound κ ∈ R on sectional curva-

ture. Then there is an upper bound on the number of singular points in any orbifold,

O, in isolS depending only on Spec(O) and κ.
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We are now prepared to state our partial extension of Huber’s theorem to the

setting of admissible Riemann orbisurfaces.

Theorem 6.4.10. If two admissible Riemann orbisurfaces are Laplace isospectral,

then we can determine their length spectra up to finitely many possibilities. Knowl-

edge of the length spectrum and the orders of the cone points determines the Laplace

spectrum.

Proof. We will consider Theorem 6.4.7 for a specific function h(r). Fix t > 0 and let

h(r) = e−r2t. Then h(r) satisfies Assumption 6.4.6, and we have

g(u) =
1

2π

∫ ∞

−∞
h(r)e−irudr

=
1√
4πt

e−u2/4t

where the first line is the definition of g(u) as the Fourier transform of h(r) and the

second line follows from Fourier analysis using a standard polar coordinates trick.

By Theorem 6.4.7, we have

∞
∑

n=0

e−r2
nt =

µ(F )

4π

∫ ∞

−∞
re−r2t tanh(πr)dr

+
∑

{R}
elliptic

1

2m(R) sin θ(R)

∫ ∞

−∞

e−2θ(R)r

1 + e−2πr
e−r2tdr

+
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 −N(P )−1/2

1√
4πt

e−(ln N(P ))2/4t. (6.5)

Let O andO′ be admissible Riemann orbisurfaces with the same Laplace spectrum.

By Theorem 6.2.1, the Laplace spectrum determines an orbifold’s volume. So we must

have vol(O) = vol(O′), and thus the first term on the right side of (6.5) must be the

same for O and O′.
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Note that both O and O′ have a metric of constant curvature -1, and hence share

a uniform lower bound on their Ricci curvature and on their sectional curvature. By

Theorem 6.4.8, we know that there are only finitely many possible isotropy types, up

to isomorphism, for points in O [O′]. By Theorem 6.4.9, there is an upper bound

on the number of cone points in O [O′]. That is, there are only finitely many cone

points in O [O′]. Putting these two facts together, we see that we can determine the

sum over the elliptic elements in (6.5) up to finitely many possibilities. That is, up

to finitely many possibilities, we know the function

f(t) =
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 −N(P )−1/2
e−(ln N(P ))2/4t.

Consider the function f(t)eω2/4t. Take the limit of this function as t ↓ 0; we see

that there is a unique ω > 0 for which this limit is finite and nonzero. Let γ1 be the

shortest primitive closed geodesic in O. Then ω = `(γ1). We remove the contribution

of γ1 and all its powers from f(t), and proceed as above to find the length of the

next-shortest primitive closed geodesic. In this way, we can determine the lengths of

the hyperbolic elements in O [O′], up to finitely many possible lists of lengths.

Now suppose we know the length spectrum and the orders of the cone points for

O [O′]. The argument that we then know the Laplace spectrum of O [O′] is exactly

as for Riemann surfaces (see [27, p. 45]). We include it for completeness.

First, we multiply both sides of (6.5) by e−t/4 and recall that λn = −1
4
− r2

n to
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obtain

∞
∑

n=0

eλnt =
µ(F )

4π
e−t/4

∫ ∞

−∞
re−r2t tanh(πr)dr

+
∑

{R}
elliptic

e−t/4

2m(R) sin θ(R)

∫ ∞

−∞

e−2θ(R)r

1 + e−2πr
e−r2tdr

+
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 −N(P )−1/2
· e

−t/4

√
4πt

e−(ln N(P ))2/4t. (6.6)

Knowledge of the length spectrum and the orders of the cone points in (6.6) translates

to knowledge of the function

c(t) =
∞
∑

n=0

eλnt − µ(F )

4π
e−t/4

∫ ∞

−∞
re−r2t tanh(πr)dr

=
∑

− 1
4
≤λn<0

eλnt − µ(F )

4π
e−t/4

∫ ∞

−∞
re−r2t tanh(πr)dr +

∑

λn<− 1
4

eλnt

=
∑

− 1
4
≤λn<0

eλnt − σ(t)e−t/4µ(F ) +
∑

λn<− 1
4

eλnt, (6.7)

where

σ(t) =
1

2π

∫ ∞

0
e−r2tr tanh(πr)dr.
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Note that as t→ ∞, σ(t) → 0. For

σ(t) =
1

2π

∫ ∞

0
e−r2tr tanh(πr)dr

=
1

2π

∫ ∞

0
e−r2tr

e2πr − 1

e2πr + 1
dr

≤ 1

2π

∫ ∞

0
e−r2tr

(

e2πr − 1
)

dr

≤ 1

2π

∫ ∞

0
e−r2tre2πrdr

≤ 1

2π
e2π

∫ 1

0
e−r2trdr +

1

2π

∫ ∞

1
e−r2tre2πr2

dr

=
1

4π
e2π

∫ 1

0
e−utdu+

1

4π

∫ ∞

1
eu(2π−t)du

where we substitute u = r2. Then

σ(t) ≤ 1

4π
e2π

(

−e
−t

t
+

1

t

)

+
1

4π

[

eu(2π−t)

2π − t

]∞

1

.

As t→ ∞, both of these terms go to zero. Thus, as t→ ∞, σ(t) → 0.

If λ1 ≥ −1
4
, then −λ1 is the unique ω > 0 such that

0 < lim
t→∞

eωtc(t) <∞

In fact, this limit is the multiplicity m1 of λ1. We can therefore subtract m1e
λ1t from

c(t) and continue in this way to find all the small eigenvalues. Once all the small

eigenvalues have been found, the function

c̃(t) = −σ(t)e−t/4µ(F ) +
∑

λn<− 1
4

eλnt

has the property that for ω > 0,

lim
t→∞

eωtc̃(t)
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is 0 or ∞. So we can now multiply c̃(t) by − et/4

σ(t)
and take the limit as t→ ∞ to get

µ(F ). We then know the function

∑

λn<− 1
4

eλnt,

and we can determine the remaining eigenvalues in the same way as we found the

small eigenvalues. Hence the spectrum of the Laplacian is determined by the length

spectrum and the orders of the cone points, and the proof is complete.

6.5 Finiteness of Isospectral Sets

McKean [24] showed that only finitely many compact Riemann surfaces have a given

spectrum. We extend this result to the setting of admissible Riemann orbisurfaces.

Specifically, we show

Theorem 6.5.1. Let O be an admissible Riemann orbisurface of genus g ≥ 1. In the

class of compact orientable hyperbolic orbifolds with cone points of order three and

higher, there are only finitely many members which are isospectral to O.

Remark 6.5.2. Note that there is no need for a dimension restriction on the orbifolds

that can be isospectral to O, by Theorem 6.2.1. In addition, by Theorem 6.2.2, there

can be no Riemann surfaces isospectral to O.

We begin with some preliminaries. Let G be a subgroup of SL(2,R). Then h ∈ G

can be represented by a matrix








a b

c d
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where a, b, c, d ∈ R. We define the trace of h to be

tr(h) = a+ d,

i.e. the sum of the diagonal elements in the matrix that represents h.

McKean [24] states the following proposition, which he attributes to Fricke and

Klein [15]. We record the proof here for completeness.

Proposition 6.5.3. Let M = G\H be a Riemann surface of genus g ≥ 2, where

G ≤ SL(2,R). Let the set {h1, . . . , hn} , n ≤ 2g, be a generating set for G. Then the

single, double, and triple traces

tr(hi),

tr(hihj), i < j

tr(hihjhk), i < j < k

determine G up to a conjugation in PSL(2,R) or a reflection.

Proof. Let G and G′ be two subgroups of SL(2,R) with the same single, double, and

triple traces of their generators. Fix h1 ∈ G. Since the single traces of the generators

of G and G′ are equal, we can pair h1 with an element in G′ that translates the same

amount; that is, we can suppose that h1 = h′1 and that h1(z) = m2z with m > 1.

Note that any other diagonal element in G fixes the same geodesic in H as h1 and

is thus a multiple of h1. So we can assume that h1 is the only diagonal element in

{h1, . . . , hn}. For i > 1, we have

tr(hi) = ai + di = tr(h′i) = a′i + d′i. (6.8)
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Also,

tr(h1hi) = tr

















m 0

0 m−1

















ai bi

ci di

















= tr

















mai mbi

m−1ci m−1di

















= mai +m−1di

and similarly for tr(h′1h
′
i), so that

mai +m−1di = tr(h1hi) = tr(h′1h
′
i) = ma′i +m−1d′i, (6.9)

or equivalently

m(ai − a′i) = m−1(d′i − di). (6.10)

From equation (6.8) we see that ai −a′i = d′i−di. But we assumed m > 1, so we must

have

ai = a′i and di = d′i. (6.11)

We also know that det(hi) = det (h′i) = 1 for all i, so

bici = b′ic
′
i (6.12)

for all i. Straightforward calculations show that

tr(hihj) − tr(h′ih
′
j) = bicj − b′ic

′
j + cibj − c′ib

′
j (6.13)

and

tr(h1hihj) − tr(h′1h
′
ih

′
j) = m(bicj − b′ic

′
j) +m−1(cibj − c′ib

′
j) (6.14)

for 1 < i < j. Combining equations (6.13) and (6.14) as we combined (6.8) and

(6.10), we see that bicj = b′ic
′
j for 1 < i < j. We want to see that none of these
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numbers are zero. Suppose c2 = 0. Then

h−n
1 h2h

n
1 (
√
−1) =

a2

√
−1 +m−2nb2

d2
,

where this is the Möbius action of SL(2,R) on H. So we get infinitely many images of
√
−1 accumulating at a2

d2

√
−1 ∈ H (unless b2 = 0, which implies that h2 is diagonal,

contradicting our assumption that h1 is the only diagonal element in {h1, . . . , hn}).

This contradicts the assumption that G acts properly discontinuously on H. A similar

argument with b2 = 0 shows that the off-diagonal entries in the matrix representing

the element h2 are nonzero. Our choice of h2 was arbitrary, thus none of the off-

diagonal entries in the matrices representing the elements h2, . . . , hn and h′2, . . . , h
′
n

are zero. We have

c′j
cj

=
bi
b′i

=
c′i
ci
,

where the second equality is equation (6.12), and this common ratio is independent

of i > 1. Since the traces do not tell us whether the ratio is positive, we must allow

the reflection

G→









1 0

0 −1









G









1 0

0 −1









.

Suppose that the common ratio is equal to t2, i.e.

bi
b′i

= t2 =
c′i
ci

for all i > 1. Then bi = t2b′i and ci = t−2c′i for i > 1. Thus









ai bi

ci di









=









ai t2b′i

t−2c′i di
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for all i > 1. We saw that ai = a′i and di = d′i for all i > 1, so

hi =









ai bi

ci di









=









a′i t2b′i

t−2c′i d′i









= sh′is
−1

for s ∈ SL(2,R) given by s : z 7→ t2z. Thus there exists s ∈ SL(2,R) which, for

all i, conjugates hi to h′i. Hence G and G′ are the same group up to conjugation in

SL(2,R) or a reflection.

Note that we can easily extend this result to the case of a group G which is the

fundamental group of an admissible Riemann orbisurface of genus g ≥ 1. We know

that any such group contains a hyperbolic element; without loss of generality, label

this element h1. Then the calculations which show that equation (6.11) holds are

still valid, as are the calculations which show that bicj = b′ic
′
j for i 6= j. An elliptic

element R in SL(2,R) is conjugate to an element of the form









cos θ − sin θ

sin θ cos θ









for 0 ≤ θ < 2π; a straightforward but messy calculation shows that the off-diagonal

entries of R are zero only if θ = 0, π. But θ = 0 is the identity element (hence not

a generator of our group), and θ = π is excluded. So the remainder of the argument

holds in the desired setting.

To prove Theorem 6.5.1, we will need the following result of Stanhope ([32]) which

gives an upper bound on the diameter of an orbifold:

Proposition 6.5.4. Let O be a compact Riemannian orbifold with Ricci curvature

bounded below by κ(n−1), κ real. Fix an arbitrary constant r greater than zero. Then

the number of disjoint balls of radius r that can be placed in O is bounded above by a
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number that depends only on κ and the number of eigenvalues of O less than or equal

to λn
κ(r).

In particular the diameter of O is bounded above by a number that depends only

on Spec(O) and κ.

So isospectral families of orbifolds with a common uniform lower Ricci curvature

bound also have a common upper diameter bound. We are now prepared to prove

Theorem 6.5.1.

Proof. Let C be the class of compact orientable hyperbolic orbifolds with cone points

of order three and higher, and let S denote the subclass of C containing those orbifolds

which are isospectral to O. Note that any member of S is an admissible Riemann

orbisurface. We want to show that S is a finite set. We know that O = Γ\H is

determined by its fundamental group Γ. Let P be a Dirichlet polygon for Γ. Theorem

5.2.1 tells us that the side-pairing elements of P generate Γ. By Proposition 6.5.3,

specifying Γ (up to a reflection or conjugation) is the same as specifying the single,

double and triple traces of a set of generators. So we need to show that there are only

finitely many possibilities for the single, double and triple traces of the side-pairing

elements of P .

First, note that there can be only finitely many isotropy types for the points in

an orbisurface in S by Theorem 6.4.8. Also, by Theorem 6.4.9, there are only finitely

many cone points in the collection of orbisurfaces in S. So there are only finitely

many choices for the trace of any elliptic element in Γ; this implies that if a product

of generators of Γ is elliptic, there are only finitely many choices for the trace of such

a product. It thus suffices to bound the trace of a hyperbolic element which arises as

a product of one, two, or three generators of Γ.

Theorem 6.4.10 tells us that the Laplace spectrum determines (up to finitely many
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possibilities) the length `(Q) of a shortest closed path in the free homotopy class

associated to a given hyperbolic conjugacy class Q in Γ. Thus the relation between

the trace of Q and `(Q) is given by:

tr(Q) = ±2 cosh
1

2
`(Q).

Note that 1
2
`(Q) is bounded by D = diameter of O. Thus the single traces of the

hyperbolic conjugacy classes are bounded by 2 coshD. We fix a point p ∈ P and

determine an upper bound for dist(p, g2 ◦ g1(p)), where g1 and g2 are side-pairing

elements of P and g2 ◦ g1 is hyperbolic. We have

dist(p, g2 ◦ g1(p)) ≤ dist(p, g1(p)) + dist(g1(p), g2 ◦ g1(p))

and each term on the right side is bounded by 2D. Thus

tr(g2 ◦ g1) ≤ 2 cosh 2D.

A similar argument shows that the trace of the product of three side-pairing elements

which is hyperbolic is bounded by 2 cosh 3D.

By Proposition 6.5.4, there is a common upper bound on the diameter of any

orbifold in S. So there are only finitely many possibilities for the single, double, and

triple traces of a hyperbolic element which arises as a product of side-pairing elements

of P , a Dirichlet polygon for Γ.

Thus we have shown that there are only finitely many ways to choose the gener-

ators of Γ, and hence to choose an element in S.

Remark 6.5.5. Buser [6] has an explicit bound of e720g2
on the cardinality of a set of

86



pairwise non-isometric isospectral compact Riemann surfaces of genus g ≥ 2. There

are examples in which the cardinality of such a set grows faster than polynomially

in g (see [4]). Many of the tools developed in this work, especially the material in

Chapters 2 and 3, are intended to be the first steps in the search for such examples

and for an explicit bound in the case of compact Riemann orbisurfaces.
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