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What is an orbifold?

Examples

1. Let Γ be a group acting properly

discontinuously on a manifold M with fixed

point set of codimension 2 or greater. Then

the quotient space M/Γ is an orbifold.

2. Zp-teardrop: topologically a 2-sphere, with a

single cone point of order p
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Example Orbifolds arising from triangle groups:

topologically a 2-sphere, with three cone points
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Points in O with nontrivial isotropy groups are

called singular points, and the collection of all

such singular points is the singular set ΣO.

Example Manifolds are orbifolds for which the

singular set is empty.
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Why are orbifolds of interest?

1. Visual way to understand group acting on a

space

2. Easiest singular spaces

3. Crystallography

4. String theory

5. Study of 3-manifolds
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Riemannian Orbifolds

Construct Riemannian metric on O by defining

metrics locally via coordinate charts and patching

metrics together using a partition of unity.

Structures must be invariant under local group

actions.

Results of local analysis hold, but global results

may not hold or take new form.

Every point p in a Riemannian orbifold has a

fundamental coordinate chart.
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Definition Let O be a compact Riemannian

orbifold. A map f : O → R is a smooth function

on O if for every coordinate chart (U, Ũ/Γ, π) on

O, the lifted function f̃ = f ◦ π is a smooth

function on Ũ .

If O is a compact Riemannian orbifold and f is a

smooth function on O, then we define the

Laplacian ∆f of f by lifting f to local covers.

That is, we lift f to f̃ = f ◦ π via a coordinate

chart (U, Ũ/Γ, π). We denote the Γ-invariant

metric on Ũ by gij and set ρ =
√

det(gij). Then

we can define

∆f̃ =
1

ρ

n
∑

i,j=1

∂

∂x̃i
(gij ∂f

∂x̃j
ρ).
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Theorem (Chiang) Let O be a compact

Riemannian orbifold.

1. The set of eigenvalues λ in ∆f = λf consists

of an infinite sequence

0 ≤ λ1 < λ2 < λ3 < · · · ↑ ∞. We call this

sequence the spectrum of the Laplacian on O,

denoted Spec(O).

2. Each eigenvalue λi has finite multiplicity.

3. There exists an orthonormal basis of L2(O)

composed of smooth eigenfunctions

φ1, φ2, φ3, . . ., where ∆φi = λiφi.
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1966: Kac asked “Can one hear the shape of a

drum?”

Examples: Milnor, Vignéras, Sunada’s method,

submersion method

2000: Dianu showed that every indexed

one-pointed torus is uniquely determined up to

isometry by the first few lengths in its length

spectrum

2002: Gordon and Rossetti showed that the

middle degree Hodge spectrum cannot distinguish

Riemannian manifolds from Riemannian orbifolds

2003: Gordon, Greenwald, Webb, Zhu calculated

the first few invariants of the heat expansion for

bad orbifolds
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Definition Let O be a 2-orbifold with r corner

reflectors of orders n1, . . . , nr and s cone points of

orders m1, . . . , ms. Then we define the (orbifold)

Euler characteristic of O to be

χ(O) = χ(X0) −
1

2

r
∑

i=1

(1 −
1

ni
) −

s
∑

j=1

(1 −
1

mj
),

where χ(XO) is the Euler characteristic of the

underlying space of O.

Theorem (Gauss-Bonnet) Let O be a

two-dimensional Riemannian orbifold. Then
∫

O

KdA = 2πχ(O),

where K is the curvature and χ(O) is the orbifold

Euler characteristic.
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Theorem (Farsi) Let O be a closed orientable

smooth Riemannian orbifold with eigenvalue

spectrum 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . ↑ ∞. Then for the

function N(λ) =
∑

λj≤λ 1 we have

N(λ) ∼ (Vol Bn
0
(1))(Vol O)

λn/2

(2π)n

as λ ↑ ∞. Here Bn
0
(1) denotes the n-dimensional

unit ball in Euclidean space.

Consequences:

1. Laplace spectrum determines an orbifold’s

dimension and volume

2. Dimension 2: spectrum determines an

orbifold’s Euler characteristic
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Proposition Fix g ≥ 0 and m ≥ 2. Let O be an

orientable hyperbolic 2-orbifold of genus g with

exactly one cone point of order m. Let O′ be in

the class of orientable hyperbolic 2-orbifolds of

genus g with cone points of orders 2 and higher,

and suppose that O is isospectral to O′. Then O′

must have exactly one cone point, and its order is

also m.
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Proof Let O and O′ be orientable hyperbolic

2-orbifolds with the same genus , i.e.

χ(XO) = χ(XO′). Further suppose that O is

isospectral to O′. Then χ(O) = χ(O′).

Suppose that O′ has one cone point of order

n1. It follows that

1

m
=

1

n1

,

or m = n1.

Now suppose that O′ has two cone points of

orders n1 and n2. Then

1

m
+ 1 =

1

n1

+
1

n2

.

But ni ≥ 2 for i = 1, 2, so 1

n1

+ 1

n2

≤ 1. This

is a contradiction, hence O and O′ are not

isospectral. This argument is easily extended

to k > 2 cone points of orders n1, . . . , nk. �
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We can extend this proposition to the case of two

orbifolds with different underlying spaces.

Proposition Let O be an orientable hyperbolic

2-orbifold of genus g0 ≥ 0 with k cone points of

orders m1, . . . , mk, where mi ≥ 2 for i = 1, . . . , k.

Let O′ be an orientable hyperbolic 2-orbifold of

genus g1 ≥ g0 with l cone points of orders

n1, . . . , nl, where nj ≥ 2 for j = 1, . . . , l. Let

h = 2(g0 − g1). If l ≥ 2(k + h), then O is not

isospectral to O′.

Corollary Fix g ≥ 0. Let O be an orientable

hyperbolic 2-orbifold of genus g with k cone

points of orders m1, . . . , mk, mi ≥ 2 for

i = 1, . . . , k. Let O′ be an orientable hyperbolic

2-orbifold of genus g with l ≥ 2k cone points of

orders n1, . . . , nl, nj ≥ 2 for j = 1, . . . , l. Then O

is not isospectral to O′.
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McKean showed that only finitely many compact

Riemann surfaces have a given spectrum. We

extend this result to the setting of orbifold

Riemann surfaces. Specifically, we show

Theorem Let O be a compact hyperbolic

orientable 2-orbifold with genus g ≥ 1 and cone

points of order three and higher. Then in the

class of compact hyperbolic orientable orbifolds,

there are only finitely many members which are

isospectral to O.
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Future Directions:

1. Explicit bounds on the size of isospectral sets

2. Examples of large families

3. Understand orbifold injectivity radius

4. What properties of orbifolds are spectrally

determined?
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