Inverse Spectral Problems on Riemannian Orbifolds Emily Dryden Dartmouth College

Union College Mathematics Conference November 8, 2003

Slides available from

http://www.math.dartmouth.edu/~edryden

What is an orbifold?

EXAMPLES

- 1. Let Γ be a group acting properly discontinuously on a manifold M with fixed point set of codimension 2 or greater. Then the quotient space M/Γ is an orbifold.
- 2. \mathbb{Z}_p -teardrop: topologically a 2-sphere, with a single cone point of order p

EXAMPLE Orbifolds arising from triangle groups: topologically a 2-sphere, with three cone points

Points in O with nontrivial isotropy groups are called *singular points*, and the collection of all such singular points is the *singular set* Σ_O .

EXAMPLE Manifolds are orbifolds for which the singular set is empty.

Why are orbifolds of interest?

- 1. Visual way to understand group acting on a space
- 2. Easiest singular spaces
- 3. Crystallography
- 4. String theory
- 5. Study of 3-manifolds

Riemannian Orbifolds

Construct Riemannian metric on O by defining metrics locally via coordinate charts and patching metrics together using a partition of unity.

Structures must be invariant under local group actions.

Results of local analysis hold, but global results may not hold or take new form.

Every point p in a Riemannian orbifold has a fundamental coordinate chart.

Definition Let O be a compact Riemannian orbifold. A map $f: O \to \mathbb{R}$ is a *smooth function* on O if for every coordinate chart $(U, \tilde{U}/\Gamma, \pi)$ on O, the lifted function $\tilde{f} = f \circ \pi$ is a smooth function on \tilde{U} .

If O is a compact Riemannian orbifold and f is a smooth function on O, then we define the Laplacian Δf of f by lifting f to local covers. That is, we lift f to $\tilde{f} = f \circ \pi$ via a coordinate chart $(U, \tilde{U}/\Gamma, \pi)$. We denote the Γ -invariant metric on \tilde{U} by g_{ij} and set $\rho = \sqrt{\det(g_{ij})}$. Then we can define

$$\Delta \tilde{f} = \frac{1}{\rho} \sum_{i,j=1}^{n} \frac{\partial}{\partial \tilde{x^{i}}} (g^{ij} \frac{\partial f}{\partial \tilde{x^{j}}} \rho).$$

THEOREM (Chiang) Let O be a compact Riemannian orbifold.

- 1. The set of eigenvalues λ in $\Delta f = \lambda f$ consists of an infinite sequence $0 \leq \lambda_1 < \lambda_2 < \lambda_3 < \dots \uparrow \infty$. We call this sequence the spectrum of the Laplacian on O, denoted Spec(O).
- 2. Each eigenvalue λ_i has finite multiplicity.
- 3. There exists an orthonormal basis of $L^2(O)$ composed of smooth eigenfunctions $\phi_1, \phi_2, \phi_3, \ldots$, where $\Delta \phi_i = \lambda_i \phi_i$.

1966: Kac asked "Can one hear the shape of a drum?"

Examples: Milnor, Vignéras, Sunada's method, submersion method

2000: Dianu showed that every indexed one-pointed torus is uniquely determined up to isometry by the first few lengths in its length spectrum

2002: Gordon and Rossetti showed that the middle degree Hodge spectrum cannot distinguish Riemannian manifolds from Riemannian orbifolds

2003: Gordon, Greenwald, Webb, Zhu calculated the first few invariants of the heat expansion for bad orbifolds **Definition** Let O be a 2-orbifold with r corner reflectors of orders n_1, \ldots, n_r and s cone points of orders m_1, \ldots, m_s . Then we define the (orbifold) Euler characteristic of O to be

$$\chi(O) = \chi(X_0) - \frac{1}{2} \sum_{i=1}^r (1 - \frac{1}{n_i}) - \sum_{j=1}^s (1 - \frac{1}{m_j}),$$

where $\chi(X_O)$ is the Euler characteristic of the underlying space of O.

THEOREM (Gauss-Bonnet) Let O be a two-dimensional Riemannian orbifold. Then

$$\int_O K dA = 2\pi \chi(O),$$

where K is the curvature and $\chi(O)$ is the orbifold Euler characteristic. **THEOREM** (Farsi) Let O be a closed orientable smooth Riemannian orbifold with eigenvalue spectrum $0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \dots \uparrow \infty$. Then for the function $N(\lambda) = \sum_{\lambda_j \le \lambda} 1$ we have

$$N(\lambda) \sim (\text{Vol } B_0^n(1))(\text{Vol } O) \frac{\lambda^{n/2}}{(2\pi)^n}$$

as $\lambda \uparrow \infty$. Here $B_0^n(1)$ denotes the *n*-dimensional unit ball in Euclidean space.

Consequences:

- 1. Laplace spectrum determines an orbifold's dimension and volume
- 2. Dimension 2: spectrum determines an orbifold's Euler characteristic

PROPOSITION Fix $g \ge 0$ and $m \ge 2$. Let O be an orientable hyperbolic 2-orbifold of genus g with exactly one cone point of order m. Let O' be in the class of orientable hyperbolic 2-orbifolds of genus g with cone points of orders 2 and higher, and suppose that O is isospectral to O'. Then O'must have exactly one cone point, and its order is also m. **Proof** Let O and O' be orientable hyperbolic 2-orbifolds with the same genus , i.e. $\chi(X_O) = \chi(X_{O'})$. Further suppose that O is isospectral to O'. Then $\chi(O) = \chi(O')$. Suppose that O' has one cone point of order n_1 . It follows that

$$\frac{1}{m} = \frac{1}{n_1},$$

or $m = n_1$.

Now suppose that O' has two cone points of orders n_1 and n_2 . Then

$$\frac{1}{m} + 1 = \frac{1}{n_1} + \frac{1}{n_2}.$$

But $n_i \ge 2$ for i = 1, 2, so $\frac{1}{n_1} + \frac{1}{n_2} \le 1$. This is a contradiction, hence O and O' are not isospectral. This argument is easily extended to k > 2 cone points of orders n_1, \ldots, n_k . We can extend this proposition to the case of two orbifolds with different underlying spaces.

PROPOSITION Let O be an orientable hyperbolic 2-orbifold of genus $g_0 \ge 0$ with k cone points of orders m_1, \ldots, m_k , where $m_i \ge 2$ for $i = 1, \ldots, k$. Let O' be an orientable hyperbolic 2-orbifold of genus $g_1 \ge g_0$ with l cone points of orders n_1, \ldots, n_l , where $n_j \ge 2$ for $j = 1, \ldots, l$. Let $h = 2(g_0 - g_1)$. If $l \ge 2(k + h)$, then O is not isospectral to O'.

COROLLARY Fix $g \ge 0$. Let O be an orientable hyperbolic 2-orbifold of genus g with k cone points of orders $m_1, \ldots, m_k, m_i \ge 2$ for $i = 1, \ldots, k$. Let O' be an orientable hyperbolic 2-orbifold of genus g with $l \ge 2k$ cone points of orders $n_1, \ldots, n_l, n_j \ge 2$ for $j = 1, \ldots, l$. Then Ois not isospectral to O'. McKean showed that only finitely many compact Riemann surfaces have a given spectrum. We extend this result to the setting of orbifold Riemann surfaces. Specifically, we show

THEOREM Let O be a compact hyperbolic orientable 2-orbifold with genus $g \ge 1$ and cone points of order three and higher. Then in the class of compact hyperbolic orientable orbifolds, there are only finitely many members which are isospectral to O. Future Directions:

- 1. Explicit bounds on the size of isospectral sets
- 2. Examples of large families
- 3. Understand orbifold injectivity radius
- 4. What properties of orbifolds are spectrally determined?