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The Plan:

1. Historical Motivation

2. Vibrating Strings

3. Drums and Manifolds

4. Orbifolds
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Motivation from Chemistry

Observed vibration frequencies (spectrum) of system in lab

Applied information to astronomical observations to identify

molecules in space

Question How do structure of system and vibrational frequencies

of system relate?

Development of quantum mechanics to provide theoretical

foundation for spectroscopy
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A wise man once said...

Sir Arthur Schuster, 1882:

We know a great deal more about the forces which produce the

vibrations of sound than about those which produce the vibrations

of light. To find out the different tunes sent out by a vibrating

system is a problem which may or may not be solvable in certain

special cases, but it would baffle the most skillful mathematician to

solve the inverse problem and to find out the shape of a bell by

means of the sounds which it is capable of sending out. And this is

the problem which ultimately spectroscopy hopes to solve in the

case of light. In the meantime we must welcome with delight even

the smallest step in the desired direction.
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Vibrating Strings

Setup: string of length L with uniform density and tension, fixed

endpoints

Pluck the string:

L

x

y

Describe motion of string with function f(x, t), which gives vertical

displacement
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Constraints on f(x, t)

Boundary conditions:

• f(0, t) = 0

• f(L, t) = 0

Wave equation:

∂2f

∂t2
=

∂2f

∂x2

acceleration curvature
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Solving the Wave Equation

Look for stationary solutions, i.e. solutions f(x, t) such that

f(x, t) = g(x)h(t)

y

L

x

g(x) gives shape

h(t) measures amplitude
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Plugging in our stationary solution

Substitute solution f(x, t) = g(x)h(t) into wave equation

∂2f

∂t2
=

∂2f

∂x2

to get

g(x)h′′(t) = g′′(x)h(t)

or
h′′(t)

h(t)
=

g′′(x)

g(x)
= −λ
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Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1. g′′(x) = −λg(x)

2. h′′(t) = −λh(t)

General solutions are

1. g(x) = A sin
√

λx + B cos
√

λx
√

λL = nπ

2. h(t) = C sin
√

λt + D cos
√

λt

9



Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1. g′′(x) = −λg(x)

2. h′′(t) = −λh(t)

General solutions are

1. g(x) = A sin
√

λx + B cos
√

λx
√

λL = nπ

2. h(t) = C sin
√

λt + D cos
√

λt

9



Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1. g′′(x) = −λg(x)

2. h′′(t) = −λh(t)

General solutions are

1. g(x) = A sin
√

λx+B cos
√

λx
√

λL = nπ

2. h(t) = C sin
√

λt + D cos
√

λt

9



Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1. g′′(x) = −λg(x)

2. h′′(t) = −λh(t)

General solutions are

1. g(x) = A sin
√

λx+B cos
√

λx
√

λL = nπ

2. h(t) = C sin
√

λt + D cos
√

λt

9



Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1. g′′(x) = −λg(x)

2. h′′(t) = −λh(t)

General solutions are

1. g(x) = A sin
√

λx+B cos
√

λx
√

λL = nπ

2. h(t) = C sin
√

λt + D cos
√

λt

9



Restrictions on λ

We have
√

λL = nπ from boundary conditions on g(x)

Frequency of oscillation given by h(t) is
√

λ
2π

Thus

frequency =

√
λ

2π
=

n

2L
,

and the string is allowed to vibrate at frequencies 1
2L

, 2
2L

, 3
2L

, . . .
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Waveforms

Specific waveforms oscillate at specific frequencies 1
2L

, 2
2L

, 3
2L

, . . .

L

L

Waveforms form basis for vector space of motion functions f(x, t)

Can “hear” the shape (length) of a string!
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Can one hear the shape of a drum?

D = compact domain in Euclidean plane

D���
���
���
���
���

���
���
���
���
���

x

z

y

Describe motion with function f(x, y, t)

Constraints on f(x, y, t):

• f(x0, y0, t) = 0 for all (x0, y0) on boundary of D

• ∂2f
∂t2

= ∂2f
∂x2 + ∂2f

∂y2 := ∆f
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Waveforms Again

Sound of drum given by list of frequencies associated to waveforms

f(x, y, t) = g(x, y)h(t)

Substitute solution into wave equation:

∆g

g
=

h′′

h
= −λ

Frequencies of vibration = Eigenvalues of ∆ on D

Cannot explicitly calculate list of frequencies in general

Can hear area and perimeter of drumhead
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You cannot hear the shape of a drum!

2
D D

1
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Manifolds

M = compact Riemannian manifold

∆ = −div grad

Big Question How much geometric information about M is

encoded in the eigenvalue spectrum of ∆?

Answers:

• dimension

• volume

• M = surface: Euler characteristic, hence genus
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What is an orbifold?

Examples

1. Manifolds

2. M/Γ, where Γ is a group acting “nicely” on a manifold M

Let M = S2, and let Γ be the group of rotations of order 3 about

the north-south axis. Then M/Γ is a (3, 3)-football.
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3. Zp-teardrop: topologically a 2-sphere, with a single cone point of

order p
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Riemannian Orbifolds

Construction of Riemannian metric on O:

• define metric locally via coordinate charts

• patch together

• must be invariant under local group actions

Define objects like function and Laplacian locally

Laplacian is well-behaved on orbifolds:

• Spec(O) = 0 ≤ λ1 < λ2 < λ3 < · · ·

• Each eigenvalue λi has finite multiplicity.
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Inverse Spectral Geometry of Orbifolds

• Gordon, Webb and Wolpert (1992): used orbifolds in

construction of drum examples

• Gordon and Rossetti (2003): middle degree Hodge spectrum

cannot distinguish Riemannian manifolds from Riemannian

orbifolds

• Gordon, Greenwald, Webb and Zhu (2003): spectral invariant

for footballs and teardrops

• Shams, Stanhope and Webb: there exist arbitrarily large (but

always finite) isospectral sets, where each element in a given set

has points of distinct isotropy
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Listening to Orbifolds

O = compact Riemannian orbifold

∆ = −div grad (locally)

Big Question How much geometric information about O is

encoded in the eigenvalue spectrum of ∆?

Answers:

• dimension

• volume

• orbisurfaces: genus???

• isospectral nonisometric Riemann orbisurfaces???
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Tools in Dimension 2

O: orbisurface with s cone points of orders m1, . . . , ms

Define the (orbifold) Euler characteristic of O to be

χ(O) = χ(X0) −
s∑

j=1

(1 −
1

mj

).

Theorem (Gauss-Bonnet) Let O be a two-dimensional

Riemannian orbifold. Then∫
O

KdA = 2πχ(O).

Euler characteristic is spectrally determined, but unknown if

spectrum determines genus
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Finiteness of Isospectral Sets

McKean showed that only finitely many compact Riemann surfaces

have a given spectrum. We extend this result to the setting of

Riemann orbisurfaces. Specifically, we show

Theorem (D.) Let O be a compact Riemann orbisurface with

genus g ≥ 1. Then in the class of compact orientable hyperbolic

orbifolds, there are only finitely many members which are

isospectral to O.
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Sounds and Lengths

Theorem (Huber) Two compact Riemann surfaces of genus g ≥ 2

have the same spectrum of the Laplacian if and only if they have

the same length spectrum.

length spectrum: sequence of all lengths of all oriented closed

geodesics on the surface, arranged in ascending order

Theorem (D.-Strohmaier) If two compact Riemann orbisurfaces

are Laplace isospectral, then we can determine their length spectra

and a sum involving the orders of the cone points. Knowledge of

the length spectrum and the orders of the cone points determines

the Laplace spectrum.
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Explicit Bounds

Theorem (Buser) Let S be a compact Riemann surface of genus

g ≥ 2. At most e720g2

pairwise non-isometric compact Riemann

surfaces are isospectral to S.

No g-independent upper bound is possible

Brooks, Gornet, and Gustafson examples: cardinality of set grows

faster than polynomially in g
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Bounds for Riemann Orbisurfaces

• Cubic pseudographs (D.)

• Fenchel-Nielsen parameters (D.)

• Collar theorem (D.-Parlier)

• Bers’ theorem (D.-Parlier)

• Understanding of geodesic behavior
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Future Directions

• How do geodesics on orbifolds behave?

• For what classes of orbifolds are the isotropy types spectrally

determined?

• What is the relationship between the spectrum of a Riemann

orbisurface and that of the Riemann surface which finitely

covers it?
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