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What is an orbifold?

Examples

• Manifolds

• M/Γ, where Γ is a group acting properly

discontinuously on a manifold M

properly discontinuously: for any compact subset

C of M , {g ∈ Γ | gC ∩ C 6= ∅} is finite
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• Zp-teardrop: topologically a 2-sphere, with a

single cone point of order p
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Why are orbifolds of interest?

1. Visual way to understand group acting on a

space

2. Easiest singular spaces

3. Crystallography

4. String theory

5. Study of 3-manifolds
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Riemann Orbisurfaces

orbisurface: two-dimensional orbifold

Riemann: Need a metric! Construction of

Riemannian metric on O analogous to manifold

case

Assume orientable
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Riemannian Orbifolds

Structures must be invariant under local group

actions.

(Every compact Riemann orbisurface is finitely

covered by a compact Riemann surface.)

Use local definitions (e.g. function, Laplacian)

Results of local analysis hold, but global results

may not hold or take new form.
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Definition Let O be a compact Riemannian

orbifold. A map f : O → R is a smooth function

on O if for every coordinate chart (U, Ũ/Γ, π) on

O, the lifted function f̃ = f ◦ π is a smooth

function on Ũ .

If O is a compact Riemannian orbifold and f is a

smooth function on O, then we define the

Laplacian ∆f of f by lifting f to local covers.

That is, we lift f to f̃ = f ◦ π via a coordinate

chart (U, Ũ/Γ, π). We denote the Γ-invariant

metric on Ũ by gij and set ρ =
√

det(gij). Then

we can define

∆f̃ =
1

ρ

n
∑

i,j=1

∂

∂x̃i
(gij ∂f

∂x̃j
ρ).
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Theorem (Chiang) Let O be a compact

Riemannian orbifold.

1. The set of eigenvalues λ in ∆f = λf consists

of an infinite sequence

0 ≤ λ1 < λ2 < λ3 < · · · ↑ ∞. We call this

sequence the spectrum of the Laplacian on O,

denoted Spec(O).

2. Each eigenvalue λi has finite multiplicity.

3. There exists an orthonormal basis of L2(O)

composed of smooth eigenfunctions

φ1, φ2, φ3, . . ., where ∆φi = λiφi.
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The Heat Equation

∆F = −∂F

∂t

where F (x, t) is heat at a point x at time t

With initial data f : O → R, F (x, 0) = f(x),

solution of heat equation given by

F (x) =

∫

O

K(x, y, t)f(y)dy
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What is K?

K : O × O ×R∗
+ → R, C∞ function given by the

convergent series

K(x, y, t) =
∑

i

e−λitφi(x)φi(y)

K is the fundamental solution of the heat equation

on O, or the heat kernel on O.

Physical interpretation: K(x, y, t) is the

temperature at time t at the point y when a unit

of heat is placed at the point x
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Weil’s Asymptotic Formula

Theorem (Farsi) Let O be a closed orientable

smooth Riemannian orbifold with eigenvalue

spectrum 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . ↑ ∞. Then for the

function N(λ) =
∑

λj≤λ 1 we have

N(λ) ∼ (Vol Bn
0 (1))(Vol O)

λn/2

(2π)n

as λ ↑ ∞.

The Laplace spectrum determines an orbifold’s

volume and dimension.
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Tools in Dimension 2

Define the (orbifold) Euler characteristic of O, a

compact orbisurface with cone points of orders

m1, . . . , ms, to be

χ(O) = χ(X0) −
s

∑

j=1

(1 − 1

mj
).

Theorem (Gauss-Bonnet) Let O be a

two-dimensional Riemannian orbifold. Then
∫

O

KdA = 2πχ(O).
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Obstructions to Isospectrality

Proposition Let O be an orientable hyperbolic

2-orbifold of genus g0 ≥ 0 with k cone points of

orders m1, . . . , mk, where mi ≥ 2 for i = 1, . . . , k.

Let O′ be an orientable hyperbolic 2-orbifold of

genus g1 ≥ g0 with l cone points of orders

n1, . . . , nl, where nj ≥ 2 for j = 1, . . . , l. Let

h = 2(g0 − g1). If l ≥ 2(k + h), then O is not

isospectral to O′.

Corollary Fix g ≥ 0. Let O be an orientable

2-orbifold of genus g with k cone points of orders

m1, . . . , mk, mi ≥ 2 for i = 1, . . . , k. Let O′ be an

orientable 2-orbifold of genus g with l ≥ 2k cone

points of orders n1, . . . , nl, nj ≥ 2 for j = 1, . . . , l.

Then O is not isospectral to O′.
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Finiteness of Isospectral Sets

McKean showed that only finitely many compact

Riemann surfaces have a given spectrum. We

extend this result to the setting of orbifold

Riemann surfaces. Specifically, we show

Theorem Let O be a compact orientable

hyperbolic 2-orbifold with genus g ≥ 1 and cone

points of order three and higher. Then in the

class of compact orientable hyperbolic orbifolds,

there are only finitely many members which are

isospectral to O.
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Huber’s Theorem for Compact Riemann Surfaces

Theorem (Huber) Two compact Riemann

surfaces of genus g ≥ 2 have the same spectrum of

the Laplacian if and only if they have the same

length spectrum.

length spectrum: sequence of all lengths of all

oriented closed geodesics on the surface, arranged

in ascending order
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Idea of Proof of Huber’s Theorem

Fundamental domain argument leads to length

trace formula

Use known eigenfunction expansion of heat kernel

K(x, y, t) =
∑

i

e−λitφi(x)φi(y)

Plug heat kernel into length trace formula to get

Selberg Trace Formula

∞
∑

n=0

h(rn) =
µ(F )

4π

∫ ∞

−∞

rh(r) tanh(πr)dr

+
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 − N(P )−1/2
g[lnN(P )]
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Selberg Trace Formula for Compact Riemann

Orbisurfaces

∞
∑

n=0

h(rn) =
µ(F )

4π

∫ ∞

−∞

rh(r) tanh(πr)dr

+
∑

{R}
elliptic

1

2m(R) sin θ(R)

∫ ∞

−∞

e−2θ(R)r

1 + e−2πr
h(r)dr

+
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 − N(P )−1/2
g[lnN(P )]
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A Partial Analog of Huber’s Theorem

Theorem If two compact orientable hyperbolic

2-orbifolds are Laplace isospectral, then we can

determine their length spectra up to finitely many

possibilities. Knowledge of the length spectrum

and the orders of the cone points determines the

Laplace spectrum.
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Sketch of Proof (Laplace spectrum determines

length spectrum):

Use appropriate version of Selberg Trace Formula

• Know volume from Weil’s asymptotic formula

• Determine elliptic summand up to finitely

many possibilities

• Read off lengths
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Elliptic Summand

Theorem (Stanhope) Given a collection of

isospectral orientable compact Riemannian

orbifolds that share a uniform lower bound on

Ricci curvature, there are only finitely many

possible isotropy types, up to isomorphism, for

points in an orbifold in the collection.

Theorem (Stanhope) Given a collection of

isospectral compact Riemannian orbifolds with

only isolated singularities that share a uniform

lower bound on sectional curvature, there is an

upper bound on the number of singular points in

any orbifold in the collection.
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Reading Off the Lengths

Up to finitely many possibilities, we know the

function

f(t) =
∑

{P}
hyperbolic

lnN(Pc)

N(P )1/2 − N(P )−1/2
e−(ln N(P ))2/4t

Consider b(t) = f(t)eω2/4t.

Take the limit of b(t) as t ↓ 0.

Unique ω > 0 for which limit is finite and nonzero

ω = `(γ1), where γ1 is shortest primitive closed

geodesic in O
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A Complete Analog of Huber’s Theorem?

Consider the wave equation

∆f = −∂2f

∂t2

Can study the wave trace

∑

j

e−it
√

λj

Poisson relation (Stanhope and Uribe):

singularities of wave trace contained in set of

lengths of closed geodesics
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Finiteness of Isospectral Sets

Theorem Let O be a compact orientable

hyperbolic 2-orbifold with genus g ≥ 1 and cone

points of order three and higher. Then in the

class of compact orientable hyperbolic orbifolds,

there are only finitely many members which are

isospectral to O.
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Sketch of Finiteness Proof:

O = H/Γ

• O determined by Γ

• P : Dirichlet polygon for Γ

• Side-pairing elements of P generate Γ

• Specify Γ via traces of set of generators

• Bound traces...

24



Bounding the Traces

Q: hyperbolic conjugacy class

E: elliptic conjugacy class

• tr(Q) = ±2 cosh 1
2`(Q) ≤ ±2 coshD

• tr(E) = 2 cos θ < 2 coshD

• double, triple traces bounded by function of

D

• bound on D from Stanhope
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Explicit Bounds

Theorem (Buser) Let S be a compact Riemann

surface of genus g ≥ 2. At most e720g2

pairwise

non-isometric compact Riemann surfaces are

isospectral to S.

No g-independent upper bound is possible

Brooks, Gornet, and Gustafson examples:

cardinality of set grows faster than polynomially

in g
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Ingredients

• Fenchel-Nielsen parameters

• Collar theorem

• Bers’ theorem
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Future Directions

1. Explicit bounds on the size of isospectral sets

2. Examples of large families

3. Understand orbifold injectivity radius

4. What properties of orbifolds are spectrally

determined?
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