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What is an orbifold?

Examples

1. Manifolds

2. M/Γ, where Γ is a group acting properly

discontinuously on a manifold M

3. Zp-teardrop: topologically a 2-sphere, with a

single cone point of order p

2



Riemannian Orbifolds

Construction of Riemannian metric on O

analogous to manifold case

Structures must be invariant under local group

actions.

Use local definitions (e.g. function, Laplacian)

Results of local analysis hold, but global results

may not hold or take new form.
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Theorem (Chiang) Let O be a compact

Riemannian orbifold.

1. The set of eigenvalues λ in ∆f = λf consists

of an infinite sequence

0 ≤ λ1 < λ2 < λ3 < · · · ↑ ∞. We call this

sequence the spectrum of the Laplacian on O,

denoted Spec(O).

2. Each eigenvalue λi has finite multiplicity.

3. There exists an orthonormal basis of L2(O)

composed of smooth eigenfunctions

φ1, φ2, φ3, . . ., where ∆φi = λiφi.

4



Tools in Dimension 2

O: 2-orbifold with r corner reflectors of orders

n1, . . . , nr and s cone points of orders m1, . . . , ms

Define the (orbifold) Euler characteristic of O to

be

χ(O) = χ(X0) −
1

2

r∑
i=1

(1 −
1

ni
) −

s∑
j=1

(1 −
1

mj
).

Theorem (Gauss-Bonnet) Let O be a

two-dimensional Riemannian orbifold. Then∫
O

KdA = 2πχ(O).
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Theorem (Farsi) Let O be a closed orientable

smooth Riemannian orbifold with eigenvalue

spectrum 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . ↑ ∞. Then for the

function N(λ) =
∑

λj≤λ 1 we have

N(λ) ∼ (Vol Bn
0
(1))(Vol O)

λn/2

(2π)n

as λ ↑ ∞.

Consequences:

1. Laplace spectrum determines an orbifold’s

dimension and volume

2. Dimension 2: spectrum determines an

orbifold’s Euler characteristic
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Obstructions to Isospectrality

Proposition Let O be an orientable hyperbolic

2-orbifold of genus g0 ≥ 0 with k cone points of

orders m1, . . . , mk, where mi ≥ 2 for i = 1, . . . , k.

Let O′ be an orientable hyperbolic 2-orbifold of

genus g1 ≥ g0 with l cone points of orders

n1, . . . , nl, where nj ≥ 2 for j = 1, . . . , l. Let

h = 2(g0 − g1). If l ≥ 2(k + h), then O is not

isospectral to O′.

Corollary Fix g ≥ 0. Let O be an orientable

2-orbifold of genus g with k cone points of orders

m1, . . . , mk, mi ≥ 2 for i = 1, . . . , k. Let O′ be an

orientable 2-orbifold of genus g with l ≥ 2k cone

points of orders n1, . . . , nl, nj ≥ 2 for j = 1, . . . , l.

Then O is not isospectral to O′.
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Finiteness of Isospectral Sets

McKean showed that only finitely many compact

Riemann surfaces have a given spectrum. We

extend this result to the setting of orbifold

Riemann surfaces. Specifically, we show

Theorem Let O be a compact orientable

hyperbolic 2-orbifold with genus g ≥ 1 and cone

points of order three and higher. Then in the

class of compact orientable hyperbolic orbifolds,

there are only finitely many members which are

isospectral to O.
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A Partial Analog of Huber’s Theorem

Theorem If two compact orientable hyperbolic

2-orbifolds are Laplace isospectral, then we can

determine their length spectra up to finitely many

possibilities. Knowledge of the length spectrum

and the orders of the cone points determines the

Laplace spectrum.
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Sketch of Proof:

Use appropriate version of Selberg Trace Formula

• Know volume from Weil’s asymptotic formula

• Know only finitely many possible isotropy

types, up to isomorphism, by theorem of

Stanhope

• Know only finitely many cone points by

theorem of Stanhope

• Can determine sum over elliptic classes up to

finitely many possibilities

• Read off lengths in usual way
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Sketch of Finiteness Proof:

O = H/Γ

• O determined by Γ

• P : Dirichlet polygon for Γ

• Side-pairing elements of P generate Γ

• Specify Γ via traces of set of generators

• Bound traces...
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Bounding the Traces

Q: hyperbolic conjugacy class

E: elliptic conjugacy class

• tr(Q) = ±2 cosh 1

2
`(Q) ≤ ±2 coshD

• tr(E) = 2 cos θ < 2 coshD

• double, triple traces bounded by function of

D

• bound on D from Stanhope
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Future Directions

1. Explicit bounds on the size of isospectral sets

2. Examples of large families

3. Understand orbifold injectivity radius

4. What properties of orbifolds are spectrally

determined?
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