Upper bounds for invariant eigenvalues of the Laplacian

Emily Dryden CAMGSD

10 February 2006

The Plan

- 1. Historical Motivation
- 2. Two Dimensions
- 3. Higher Dimensions:
 - S^n with an action of O(n)
 - Manifolds with an action of a Lie group

Setup

M: compact connected Riemannian manifold of dimension $n \geq 2$

Laplacian: $\Delta = -\text{div grad}$

Spec(g) =
{
$$0 = \lambda_0(g) < \lambda_1(g) \leq \ldots \leq \lambda_k(g) \leq \ldots$$
}

Question Consider the kth eigenvalue, normalised as a functional

$$g \to \lambda_k(g) \operatorname{Vol}(g)^{2/n}$$

on the space of Riemannian metrics. What are critical/extremal metrics for this functional?

Answers for Surfaces

 S^2 [Hersch] :

$$\lambda_1(g) \operatorname{Vol}(g) \le 8\pi = \lambda_1(g_{\operatorname{can}}) \operatorname{Vol}(g_{\operatorname{can}})$$

Orientable surface of genus γ [Yang-Yau]:

$$\lambda_1(g) \operatorname{Vol}(g) \le 8\pi \left[\frac{\gamma+3}{2} \right]$$

Surface of genus γ [Korevaar]: There exists a universal constant C > 0 such that for all k > 0,

$$\lambda_k(g) \le Ck(\gamma + 1).$$

Answers in Higher Dimensions

THEOREM [Colbois-Dodziuk]:

$$\sup_{g} \{\lambda_1(g) \operatorname{Vol}(g)^{2/n}\} = \infty$$

To get finite bounds, we need to add some restrictions...

- conformal class (Korevaar, El Soufi-Ilias)
- projective Kähler metrics (Bourguignon-Li-Yau)
- symplectic or Kähler metrics (L. Polterovich)
- invariance under isometries (Abreu-Freitas)

$$S^1$$
 acts on S^2

Consider S^2 with metrics which are smooth, have total area 4π , and are S^1 -invariant.

Denote the invariant eigenvalues by $\lambda_k^{\text{inv}}(g)$. THEOREM [Abreu-Freitas]: In this setting, $\lambda_1^{\text{inv}}(g)$ can be any number strictly between 0 and ∞ . Do more restrictions help get bounds?

Fixed Gauss curvature at poles: still have $0 < \lambda_1^{inv}(g) < \infty$

Metrics embedded in \mathbb{R}^3 :

$$\lambda_k^{\rm inv}(g) < \frac{1}{2}\xi_k^2$$

and in particular

$$\lambda_1^{\rm inv}(g) < \frac{1}{2}\xi_1^2 \approx 2.89$$

Can characterize the supremum geometrically

Questions, Questions, Questions

Questions

- How do the invariant eigenvalues of a manifold behave under general group actions?
- Is being embedded essential to bounding $\lambda_k^{\text{inv}}(g) \text{Vol}(g)$?
- If we find critical metrics, to what do they correspond geometrically?

Dimension 2

Nontrivial S^1 -actions exist on

- sphere
- torus
- projective plane
- Klein bottle

PROPOSITION [Colbois-D-El Soufi]: Within the class of smooth S^1 -invariant metrics g on T^2 which correspond to an embedding of T^2 in \mathbb{R}^3 ,

$$\sup_{g} \{\lambda_1^{inv}(g) \operatorname{Vol}(g)\} = \infty.$$

Remark The argument also works for a general torus $T^{n+1} = S^1 \times S^n$.

Higher Dimensions

Consider O(n)-invariant metrics on S^n embedded in \mathbb{R}^{n+1} , of volume 1.

THEOREM [Colbois-D-El Soufi]: For all k,

 $\lambda_k^{\rm inv}(g) < \lambda_k^{\rm inv}(D^n).$

Furthermore, there exists a sequence of embeddings of S^n in \mathbb{R}^{n+1} with

 $\lambda_k^{inv}(g_i) \to \lambda_k^{inv}(D^n),$

but $\lambda_k^{\text{inv}}(D^n)$ is not attained by any smooth metric on S^n .

Discrete Lie Groups

THEOREM [Korevaar]: Let (M, g_0) be a compact Riemannian manifold and G < Isom(M) a discrete group such that the quotient M/G is orientable. Then

$$\sup_{g} \{\lambda_k^{inv}(g) \operatorname{Vol}(g)^{2/n}\} \le C_n(g_0) k^{2/n},$$

where g is a G-invariant metric conformal to g_0 , and C depends only on n and g_0 . Removing the conformal requirement

THEOREM [Colbois-D-El Soufi]: Let (M, g_0) be a compact Riemannian manifold of dimension $n \geq 3$, and G < Isom(M) a discrete group. Then

 $\sup_{g} \{\lambda_1^{inv}(g) \operatorname{Vol}(g)^{2/n}\} = \infty.$

Future Directions

- Can we construct G-invariant metrics, G discrete, such that $\lambda_1(g) \operatorname{Vol}(g)^{2/n}$ gets arbitrarily large?
- What happens if we look at invariant p-forms, p > 0?
- Can we say more about critical invariant metrics?