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The Plan:

1. Historical Motivation

2. Vibrating Strings

3. Drums and Manifolds

4. Orbifolds
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Historical Motivation

Chemistry: identify elements by spectral

“fingerprints”

Physics: development of quantum mechanics

Mathematics: how are knowledge of structure and

knowledge of spectrum related?

3



Vibrating Strings

Setup: string of length L with uniform density

and tension, fixed endpoints

Pluck the string:

L

x

y

Describe motion of string with function f(x, t)

Constraints on f(x, t):

• f(0, t) = 0

• f(L, t) = 0

•
∂2f
∂t2 = ∂2f

∂x2
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Solving the Wave Equation

Look for waveforms, i.e. solutions f(x, t) such

that

f(x, t) = g(x)h(t)

y

L

x

g(x) gives shape

h(t) measures amplitude

Substitute solution into wave equation:

h′′(t)

h(t)
=

g′′(x)

g(x)
= λ

so

T (h) = λh, T (g) = λg
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Waveforms

Specific waveforms oscillate at specific frequencies

L

L

Sound of string of length L is overtone sequence
1

2L , 2
2L , 3

2L , . . .

Waveforms form basis for vector space of motion

functions f(x, t)

Can calculate sound from length

Can “hear” the length of a string!
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Can one hear the shape of a drum?

D = compact domain in Euclidean plane
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Describe motion with function f(x, y, t)

Constraints on f(x, y, t):

• f(x0, y0, t) = 0 for all (x0, y0) on boundary

• −
∂2f
∂t2 = −

∂2f
∂x2 −

∂2f
∂y2 := ∆f
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Waveforms Again

Sound of drum given by list of frequencies

associated to waveforms

f(x, y, t) = g(x, y)h(t)

Substitute solution into wave equation:

∆g

g
= −

h′′

h
= λ

Frequencies of vibration = Eigenvalues of ∆ on D

Cannot explicitly calculate list of frequencies in

general

Can hear area and perimeter of drumhead
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You cannot hear the shape of a drum!

2
D D

1
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Manifolds

M = compact Riemannian manifold

∆ = −div grad

Big Question: How much geometric information

about M is encoded in the eigenvalue spectrum of

∆?

Answers:

• dimension

• volume

• M = surface:

Euler characteristic, hence genus
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• round spheres characterized by spectra

• isospectral nonisometric Riemann surfaces

• isospectral nonisometric planar domains

0

M

M M

MO O

O

1 2

1
0

2
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What is an orbifold?

Examples

1. Manifolds

2. M/Γ, where Γ is a group acting “nicely” on a

manifold M

Let M = S2, and let Γ be the group of rotations

of order 3 about the north-south axis. Then M/Γ

is a (3, 3)-football.
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3. Zp-teardrop: topologically a 2-sphere, with a

single cone point of order p
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Riemannian Orbifolds

Construction of Riemannian metric on O:

• define metric locally via coordinate charts

• patch together

• must be invariant under local group actions

Define objects like function and Laplacian locally

Laplacian is well-behaved on orbifolds:

• Spec(O) = 0 ≤ λ1 < λ2 < λ3 < · · · ↑ ∞

• Each eigenvalue λi has finite multiplicity.

• Orthonormal basis of L2(O) composed of

smooth eigenfunctions
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Inverse Spectral Geometry of Orbifolds

• Gordon, Webb and Wolpert (1992): used

orbifolds in construction of drum examples

• Gordon and Rossetti (2003): middle degree

Hodge spectrum cannot distinguish

Riemannian manifolds from Riemannian

orbifolds

• Gordon, Greenwald, Webb and Zhu (2003):

spectral invariant for footballs and teardrops

• Shams, Stanhope and Webb: there exist

arbitrarily large (but always finite) isospectral

sets, where each element in a given set has

points of distinct isotropy
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Listening to Orbifolds

O = compact Riemannian orbifold

∆ = −div grad (locally)

Big Question: How much geometric information

about O is encoded in the eigenvalue spectrum of

∆?

Answers:

• dimension

• volume

• orbisurfaces: genus???

• isospectral nonisometric Riemann

orbisurfaces???
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Tools in Dimension 2

O: orbisurface with s cone points of orders

m1, . . . , ms

Define the (orbifold) Euler characteristic of O to

be

χ(O) = χ(X0) −

s∑
j=1

(1 −
1

mj
).

Theorem (Gauss-Bonnet) Let O be a

two-dimensional Riemannian orbifold. Then∫
O

KdA = 2πχ(O).

Euler characteristic is spectrally determined, but

unknown if spectrum determines genus
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Finiteness of Isospectral Sets

McKean showed that only finitely many compact

Riemann surfaces have a given spectrum. We

extend this result to the setting of Riemann

orbisurfaces. Specifically, we show

Theorem (D.) Let O be a compact Riemann

orbisurface with genus g ≥ 1. Then in the class of

compact orientable hyperbolic orbifolds, there are

only finitely many members which are isospectral

to O.
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Huber’s Theorem for Compact Riemann Surfaces

Theorem (Huber) Two compact Riemann

surfaces of genus g ≥ 2 have the same spectrum of

the Laplacian if and only if they have the same

length spectrum.

length spectrum: sequence of all lengths of all

oriented closed geodesics on the surface, arranged

in ascending order
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An Analog of Huber’s Theorem

Theorem(D.-Strohmaier) If two compact

Riemann orbisurfaces are Laplace isospectral,

then we can determine their length spectra and a

sum involving the orders of the cone points.

Knowledge of the length spectrum and the orders

of the cone points determines the Laplace

spectrum.
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Selberg Trace Formula for Compact Riemann

Orbisurfaces

∞∑
n=0

h(rn) =
µ(F )

4π

∫
∞

−∞

rh(r) tanh(πr)dr

+
∑
{R}

elliptic

1

2m(R) sin θ(R)

∫
∞

−∞

e−2θ(R)r

1 + e−2πr
h(r)dr

+
∑
{P}

hyperbolic

lnN(Pc)

N(P )1/2 − N(P )−1/2
g[lnN(P )]
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Sketch of Proof:

Use appropriate version of Selberg Trace Formula

• Plug in a “good” test function for h(r)

• Know volume from Weyl’s asymptotic formula

• Read off lengths of geodesics from singular

support of wave trace

• Left with elliptic summand involving orders

of cone points
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Explicit Bounds

Theorem (Buser) Let S be a compact Riemann

surface of genus g ≥ 2. At most e720g2

pairwise

non-isometric compact Riemann surfaces are

isospectral to S.

No g-independent upper bound is possible

Brooks, Gornet, and Gustafson examples:

cardinality of set grows faster than polynomially

in g
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Bounds for Riemann Orbisurfaces

• Cubic pseudographs (D.)

• Fenchel-Nielsen parameters (D.)

• Collar theorem (D.-Parlier)

• Bers’ theorem (D.-Parlier)

• Understanding of geodesic behavior
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Future Directions

• How do geodesics on orbifolds behave?

• For what classes of orbifolds are the isotropy

types spectrally determined?

• What is the relationship between the

spectrum of a Riemann orbisurface and that

of the Riemann surface which finitely covers

it?
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