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A little history
Rayleigh quotients

The Original Isoperimetric Inequality

The Problem of Queen Dido: maximize the size of
Carthage

What about closed curves?
planar
simple
fix length L, maximize area A
“The” isoperimetric inequality:

L2 ≥ 4πA
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A little history
Rayleigh quotients

Generalizations

Rn: minimize surface area among domains with fixed
volume

Mathematical physics: a physical quantity is extremal for a
circular or spherical domain
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A little history
Rayleigh quotients

An example

Setup:
domain D ⊂ R2

f : D → R, a smooth function which equals zero on the
boundary of D

∆f := ∂2f
∂2x + ∂2f

∂2y

Seek solutions to ∆f = λf

Especially interested in λ1
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A little history
Rayleigh quotients

The Rayleigh quotient for domains

Theorem
Let D be a domain with ∆ acting on piecewise smooth, nonzero
functions f which are zero on the boundary of D, and with
eigenvalues λ1 ≤ λ2 ≤ · · · . For any such f ,

λ1 ≤
∫

D |∇f |2∫
D f 2 ,

with equality if and only if f is an eigenfunction of λ1.
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A little history
Rayleigh quotients

Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains D ⊂ R2 with fixed area, the infimum of the
Rayleigh quotient attains a minimum if and only if D is a circular
disk.

Higher-dimensional analog: Rayleigh quotient attains minimum
iff D ⊂ Rn is sphere
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A little history
Rayleigh quotients

The Rayleigh quotient for manifolds

Setup:
(M,g), compact Riemannian manifold
∆, Laplace operator on (M,g)

Eigenvalues of ∆ are

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

Rayleigh quotient:

λ1(M) = inf
f∈F1

∫
M |∇f |2∫

M f 2 ,

where F1 is set of smooth nonzero functions on M
orthogonal to the constant functions
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A little history
Rayleigh quotients

Hersch’s Theorem

Theorem (Hersch)

Consider the sphere S2 equipped with any Riemannian metric
g. We have

λ1Vol(g) ≤ 8π,

with equality only in the case of the constant curvature metric.

Idea of proof: Move S2 to its center of mass, and use
coordinate functions as test functions in the Rayleigh quotient.
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Dimension 2
Higher dimensions

Compact orientable surfaces

Theorem (Yang-Yau)

Let (M,g) be a compact orientable surface of genus γ. Then

λ1(g)Vol(g) ≤ 8π
⌊
γ + 3

2

⌋
.

Generalized to nonorientable surfaces by Li-Yau
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Dimension 2
Higher dimensions

What’s changed?

Theorem (Korevaar)

Let (M,g) be a compact orientable surface of genus γ, and let
C > 0 be a universal constant. For every integer k ≥ 1,

λk (g)Vol(g) ≤ C(γ + 1)k .

Open questions abound, e.g., optimal bound for λ2 on Klein
bottle or surface of genus 2
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Dimension 2
Higher dimensions

Dimension 3

Bleecker: For every n ≥ 3, the sphere Sn admits metrics of
volume one with λ1 arbitrarily large.

Theorem (Colbois-Dodziuk)

Let (Mn,g) be a compact, closed, connected manifold of
dimension at least three. Then

supλ1(g)Vol(g)2/n =∞,

where the supremum is taken over all Riemannian metrics g on
M.
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Dimension 2
Higher dimensions

Idea of proof

Use Bleecker’s result: take (Sn,g0) such that
Vol(Sn,g0) = 1 and λ1(g0) ≥ k + 1, where k is a large
constant

Form connected sum of Sn and M
Connected sum is diffeomorphic to M, contains
submanifold Ω naturally identified with Sn \ Bρ
Take arbitrary metric g1 on M whose restriction to Ω equals
g0 restricted to Ω, make g1 really small on most of M \ Ω
without changing it on Ω

M “looks like” (Sn,g0), and λ1 for modified g1 is like λ1(g0)
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Dimension 2
Higher dimensions

Where do we go from here?

To study extremal properties of the Laplace spectrum in
dimensions greater than two, we must add more constraints!

intrinsic constraints: restrict to conformal class of metrics,
to projective Kähler metrics, to metrics which preserve the
symplectic or Kähler structure, etc.
extrinsic constraints: mean curvature (Reilly’s inequality)
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Invariant metrics on spheres
Other invariant metrics

Back to the 2-sphere

Tweak Hersch’s assumptions:
consider the subset of S1-invariant metrics
let ∆ act on S1-invariant functions
resulting eigenvalues denoted λS1

k

Abreu-Freitas: λS1

1 (g)Vol(g) is unbounded in general but is
bounded if we only consider metrics arising from embeddings
of S2 in R3

Bound is attained by the union of two disks of equal area
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Invariant metrics on spheres
Other invariant metrics

What happens for higher-dimensional spheres?

replace S1 by O(n)

have “hypersurfaces of revolution” diffeomorphic to
hyperspheres
let ∆ act on O(n)-invariant functions
consider O(n)-invariant metrics on Sn arising from
embeddings of Sn in Rn+1

Theorem (Colbois-D-El Soufi)

Let (Sn,g) be as above, with Vol(g) = 1. Then, for all k ∈ Z,

λ
O(n)
k (g) < λ

O(n)
k (Dn)Vol(Dn)2/n,

where Dn is the Euclidean n-ball of volume 1/2.
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Invariant metrics on spheres
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What about any manifold, not just spheres?

replace Sn by ccc manifold M of dimension n ≥ 3
replace O(n) by finite subgroup G of group of
diffeomorphisms acting on M
let ∆ act on G-invariant functions
consider G-invariant metrics on M

Then λG
1 (g)Vol(g)2/n is unbounded!

Proof: apply Colbois-Dodziuk “equivariantly”
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Dropping one hypothesis

ccc manifold M of dimension n ≥ 3
discrete group G acting on M
consider G-invariant metrics on M

Open Question: Does λ1(g)Vol(g)2/n become arbitrarily large?
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Hypersurfaces
Intersection index

An extrinsic constraint

Setup:
M̄, compact smooth manifold of dimension n ≥ 2
X : M̄ → Rn+p, p ≥ 1, an immersion
M = X (M̄), compact connected submanifold without
boundary immersed in Euclidean space
g, Riemannian metric naturally induced on M̄

Can view two-dimensional results given earlier in this context
Result of Colbois-Dodziuk + Nash embedding theorem implies

sup
M

λ1(M)Vol(M)2/n =∞

Emily B. Dryden Upper Bounds on Eigenvalues of the Laplacian
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Hypersurfaces
Intersection index

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in Rn+1. Then

λ1(M)Vol(M)2/n ≤ A(n)λ1(Sn)Vol(Sn)2/n,

where λ1(Sn) = n and A(n) = (n+2)Vol(Sn)
2Vol(Sn−1)

.

Proof uses barycentric methods and projection

Emily B. Dryden Upper Bounds on Eigenvalues of the Laplacian
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Hypersurfaces
Intersection index

Replacing “convex”

Hypersurface M: intersection index is maximum number of
collinear points in M

Submanifold Mn in Rn+p: intersection index of M is

i(M) = sup
Π

#M ∩ Π,

where Π runs over set of p-planes transverse to M in Rn+p

Emily B. Dryden Upper Bounds on Eigenvalues of the Laplacian
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Hypersurfaces
Intersection index

Using the intersection index

Theorem (Colbois-D-El Soufi)

Let Mn be a compact immersed submanifold of a Euclidean
space Rn+p. Then

λ1(M)Vol(M)2/n ≤ A(n)

(
i(M)

2

)1+ 2
n

λ1(Sn)Vol(Sn)2/n.
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Moving on up...

Theorem (Colbois-D-El Soufi)
For every compact n-dimensional immersed submanifold M of
Rn+p and for every integer k,

λk (M)Vol(M)2/n ≤ c(n)i(M)2/nk2/n,

where c(n) is an explicit constant depending only on the
dimension n.
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Hypersurfaces
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What does it all mean?

Combining Colbois-Dodziuk with our results in the extrinsic
context says...

Given a smooth manifold M̄ of dimension n ≥ 3, there exist
Riemannian metrics g of volume 1 on M̄ such that any
immersion of M̄ into a Euclidean space Rn+p which preserves g
must have a very large intersection index and volume which
concentrates into a small Euclidean ball.
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Summary

One physical isoperimetric problem is to extremize λ1
subject to certain constraints, the most basic of which is
the volume of the manifold.

The Rayleigh quotient and spheres often play key roles in
the solutions to this isoperimetric problem.
For manifolds of dimension at least three, getting bounds
on λ1 requires adding more constraints, either intrinsic (like
invariance of the metric and eigenfunctions under a group
action) or extrinsic (like immersed submanifolds).

Outlook
Are there other natural constraints, either of an intrinsic or
extrinsic nature, that give interesting results?
When upper bounds exist, can we show that they are
optimal?
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