Upper Bounds on Eigenvalues of the Laplacian: Surfaces and Beyond

Emily B. Dryden

Bucknell University

Texas Geometry and Topology Conference February 27, 2010

Emily B. Dryden Upper Bounds on Eigenvalues of the Laplacian

イロト イポト イヨト イヨト

Isoperimetric inequalities

- 2 Upper bounds on eigenvalues for manifolds
- Metrics invariant under a group action

4 Submanifolds

イロト イポト イヨト イヨト

A little history Rayleigh quotients

The Original Isoperimetric Inequality

 The Problem of Queen Dido: maximize the size of Carthage

イロト イポト イヨト イヨト

A little history Rayleigh quotients

The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about *closed* curves?

ヘロト ヘ戸ト ヘヨト ヘヨト

A little history Rayleigh quotients

The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about *closed* curves?
 - o planar
 - simple
 - fix length L, maximize area A

イロト イポト イヨト イヨト

A little history Rayleigh quotients

The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about *closed* curves?
 - o planar
 - simple
 - fix length L, maximize area A
 - "The" isoperimetric inequality:

$$L^2 \ge 4\pi A$$

イロト イポト イヨト イヨト

A little history Rayleigh quotients

Generalizations

• \mathbb{R}^n : minimize surface area among domains with fixed volume

Emily B. Dryden Upper Bounds on Eigenvalues of the Laplacian

イロト 不得 とくほ とくほとう

A little history Rayleigh quotients

Generalizations

- \mathbb{R}^n : minimize surface area among domains with fixed volume
- Mathematical physics: a physical quantity is extremal for a circular or spherical domain

ヘロト 人間 ト ヘヨト ヘヨト

A little history Rayleigh quotients

An example

Setup:

- domain $D \subset \mathbb{R}^2$
- *f* : *D* → ℝ, a smooth function which equals zero on the boundary of *D*

•
$$\Delta f := \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

イロト 不得 とくほ とくほとう

A little history Rayleigh quotients

An example

Setup:

- domain $D \subset \mathbb{R}^2$
- *f* : *D* → ℝ, a smooth function which equals zero on the boundary of *D*

•
$$\Delta f := \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

Seek solutions to $\Delta f = \lambda f$

```
Especially interested in \lambda_1
```

ヘロア 人間 アメヨア 人口 ア

ъ

A little history Rayleigh quotients

The Rayleigh quotient for domains

Theorem

Let D be a domain with Δ acting on piecewise smooth, nonzero functions f which are zero on the boundary of D, and with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$. For any such f,

$$\lambda_1 \leq \frac{\int_D |\nabla f|^2}{\int_D f^2},$$

with equality if and only if f is an eigenfunction of λ_1 .

ヘロン 人間 とくほ とくほ とう

A little history Rayleigh quotients

Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.

ヘロト 人間 ト ヘヨト ヘヨト

A little history Rayleigh quotients

Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.

Higher-dimensional analog: Rayleigh quotient attains minimum iff $D \subset \mathbb{R}^n$ is sphere

ヘロト 人間 ト ヘヨト ヘヨト

A little history Rayleigh quotients

The Rayleigh quotient for manifolds

Setup:

- (M, g), compact Riemannian manifold
- Δ , Laplace operator on (M, g)
- Eigenvalues of Δ are

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

A little history Rayleigh quotients

The Rayleigh quotient for manifolds

Setup:

- (M, g), compact Riemannian manifold
- Δ , Laplace operator on (M, g)
- Eigenvalues of Δ are

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leq \lambda_{\mathbf{2}} \leq \cdots$$

Rayleigh quotient:

$$\lambda_1(\boldsymbol{M}) = \inf_{\boldsymbol{f}\in\mathcal{F}_1} \frac{\int_{\boldsymbol{M}} |\nabla \boldsymbol{f}|^2}{\int_{\boldsymbol{M}} \boldsymbol{f}^2},$$

where \mathcal{F}_1 is set of smooth nonzero functions on M orthogonal to the constant functions

A little history Rayleigh quotients

Hersch's Theorem

Theorem (Hersch)

Consider the sphere S^2 equipped with any Riemannian metric g. We have

 $\lambda_1 Vol(g) \leq 8\pi$,

with equality only in the case of the constant curvature metric.

Idea of proof: Move S^2 to its center of mass, and use coordinate functions as test functions in the Rayleigh quotient.

ヘロト ヘアト ヘビト ヘビト

Dimension 2 Higher dimensions

Compact orientable surfaces

Theorem (Yang-Yau)

Let (M, g) be a compact orientable surface of genus γ . Then

$$\lambda_1(g)$$
 Vol $(g) \leq 8\pi \left\lfloor rac{\gamma+3}{2}
ight
floor$

イロト イポト イヨト イヨト

Dimension 2 Higher dimensions

Compact orientable surfaces

Theorem (Yang-Yau)

Let (M, g) be a compact orientable surface of genus γ . Then

$$\lambda_1(g)$$
 Vol $(g) \leq 8\pi \left\lfloor rac{\gamma+3}{2}
ight
floor$

Generalized to nonorientable surfaces by Li-Yau

ヘロン 人間 とくほ とくほ とう

э

Dimension 2 Higher dimensions

What's changed?

Theorem (Korevaar)

Let (M, g) be a compact orientable surface of genus γ , and let C > 0 be a universal constant. For every integer $k \ge 1$,

 $\lambda_k(g) \operatorname{Vol}(g) \leq C(\gamma + 1)k.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Dimension 2 Higher dimensions

What's changed?

Theorem (Korevaar)

Let (M, g) be a compact orientable surface of genus γ , and let C > 0 be a universal constant. For every integer $k \ge 1$,

 $\lambda_k(g) \operatorname{Vol}(g) \leq C(\gamma + 1)k.$

Open questions abound, e.g., *optimal* bound for λ_2 on Klein bottle or surface of genus 2

ヘロト 人間 とくほ とくほ とう

Dimension 2 Higher dimensions

Dimension 3

Bleecker: For every $n \ge 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.

ヘロト 人間 ト ヘヨト ヘヨト

э

Dimension 2 Higher dimensions

Dimension 3

Bleecker: For every $n \ge 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.

Theorem (Colbois-Dodziuk)

Let (M^n, g) be a compact, closed, connected manifold of dimension at least three. Then

$$\sup \lambda_1(g) \operatorname{Vol}(g)^{2/n} = \infty,$$

where the supremum is taken over all Riemannian metrics g on *M*.

ヘロン 人間 とくほ とくほ とう

Dimension 2 Higher dimensions

Idea of proof

 Use Bleecker's result: take (Sⁿ, g₀) such that Vol(Sⁿ, g₀) = 1 and λ₁(g₀) ≥ k + 1, where k is a large constant

イロト イポト イヨト イヨト

Dimension 2 Higher dimensions

Idea of proof

- Use Bleecker's result: take (Sⁿ, g₀) such that Vol(Sⁿ, g₀) = 1 and λ₁(g₀) ≥ k + 1, where k is a large constant
- Form connected sum of Sⁿ and M

ヘロン 人間 とくほ とくほ とう

э.

Dimension 2 Higher dimensions

Idea of proof

- Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to *M*, contains submanifold Ω naturally identified with Sⁿ \ B_ρ

イロト イポト イヨト イヨト

Dimension 2 Higher dimensions

Idea of proof

- Use Bleecker's result: take (Sⁿ, g₀) such that Vol(Sⁿ, g₀) = 1 and λ₁(g₀) ≥ k + 1, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to *M*, contains submanifold Ω naturally identified with Sⁿ \ B_ρ
- Take arbitrary metric g₁ on M whose restriction to Ω equals g₀ restricted to Ω, make g₁ really small on most of M \ Ω without changing it on Ω

ヘロン 人間 とくほ とくほ とう

Dimension 2 Higher dimensions

Idea of proof

- Use Bleecker's result: take (Sⁿ, g₀) such that Vol(Sⁿ, g₀) = 1 and λ₁(g₀) ≥ k + 1, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to *M*, contains submanifold Ω naturally identified with Sⁿ \ B_ρ
- Take arbitrary metric g₁ on M whose restriction to Ω equals g₀ restricted to Ω, make g₁ really small on most of M \ Ω without changing it on Ω
- *M* "looks like" (S^n , g_0), and λ_1 for modified g_1 is like $\lambda_1(g_0)$

イロト イポト イヨト イヨト 一日

Dimension 2 Higher dimensions

Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!

くロト (過) (目) (日)

Dimension 2 Higher dimensions

Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!

- intrinsic constraints: restrict to conformal class of metrics, to projective Kähler metrics, to metrics which preserve the symplectic or Kähler structure, etc.
- extrinsic constraints: mean curvature (Reilly's inequality)

ヘロト ヘアト ヘビト ヘビト

Invariant metrics on spheres Other invariant metrics

Back to the 2-sphere

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

ヘロト ヘ戸ト ヘヨト ヘヨト

Invariant metrics on spheres Other invariant metrics

Back to the 2-sphere

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g)$ Vol(g) is unbounded in general

ヘロン 不通 とくほ とくほ とう

Invariant metrics on spheres Other invariant metrics

Back to the 2-sphere

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g)$ Vol(g) is unbounded in general but **is** bounded if we only consider metrics arising from *embeddings* of S^2 in \mathbb{R}^3

ヘロト 人間 ト ヘヨト ヘヨト

Invariant metrics on spheres Other invariant metrics

Back to the 2-sphere

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g)$ Vol(g) is unbounded in general but **is** bounded if we only consider metrics arising from *embeddings* of S^2 in \mathbb{R}^3

Bound is attained by the union of two disks of equal area

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Invariant metrics on spheres Other invariant metrics

What happens for higher-dimensional spheres?

• replace S^1 by O(n)

ヘロト ヘアト ヘビト ヘビト

Invariant metrics on spheres Other invariant metrics

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres

ヘロト ヘアト ヘビト ヘビト

Invariant metrics on spheres Other invariant metrics

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres
- let Δ act on O(n)-invariant functions
- consider O(n)-invariant metrics on Sⁿ arising from embeddings of Sⁿ in ℝⁿ⁺¹

イロト イポト イヨト イヨト 一日

Invariant metrics on spheres Other invariant metrics

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres
- let Δ act on O(n)-invariant functions
- consider O(n)-invariant metrics on Sⁿ arising from embeddings of Sⁿ in ℝⁿ⁺¹

Theorem (Colbois-D-El Soufi)

Let (S^n, g) be as above, with Vol(g) = 1. Then, for all $k \in \mathbb{Z}$,

$$\lambda_k^{O(n)}(g) < \lambda_k^{O(n)}(D^n) \operatorname{Vol}(D^n)^{2/n},$$

where D^n is the Euclidean n-ball of volume 1/2.

Invariant metrics on spheres Other invariant metrics

What about any manifold, not just spheres?

- replace S^n by ccc manifold M of dimension $n \ge 3$
- replace O(n) by finite subgroup G of group of diffeomorphisms acting on M
- let Δ act on *G*-invariant functions
- consider G-invariant metrics on M

くロト (過) (目) (日)

Invariant metrics on spheres Other invariant metrics

What about any manifold, not just spheres?

- replace S^n by ccc manifold M of dimension $n \ge 3$
- replace O(n) by finite subgroup G of group of diffeomorphisms acting on M
- let Δ act on *G*-invariant functions
- consider G-invariant metrics on M

Then $\lambda_1^G(g)$ Vol $(g)^{2/n}$ is unbounded!

Proof: apply Colbois-Dodziuk "equivariantly"

ヘロト ヘアト ヘビト ヘビト

Invariant metrics on spheres Other invariant metrics

Dropping one hypothesis

- ccc manifold M of dimension $n \ge 3$
- discrete group G acting on M
- consider *G*-invariant metrics on *M*

ヘロト 人間 ト ヘヨト ヘヨト

Invariant metrics on spheres Other invariant metrics

Dropping one hypothesis

- ccc manifold M of dimension $n \ge 3$
- discrete group G acting on M
- consider G-invariant metrics on M

Open Question: Does $\lambda_1(g)$ Vol $(g)^{2/n}$ become arbitrarily large?

ヘロン 人間 とくほ とくほ とう

ъ

Hypersurfaces Intersection index

An extrinsic constraint

Setup:

- \bar{M} , compact smooth manifold of dimension $n \ge 2$
- $X: \overline{M} \to \mathbb{R}^{n+p}, p \ge 1$, an immersion
- $M = X(\overline{M})$, compact connected submanifold without boundary immersed in Euclidean space
- g, Riemannian metric naturally induced on \overline{M}

ヘロト ヘアト ヘビト ヘビト

Hypersurfaces Intersection index

An extrinsic constraint

Setup:

- \bar{M} , compact smooth manifold of dimension $n \ge 2$
- $X: \overline{M} \to \mathbb{R}^{n+p}, p \ge 1$, an immersion
- $M = X(\overline{M})$, compact connected submanifold without boundary immersed in Euclidean space
- g, Riemannian metric naturally induced on \bar{M}

Can view two-dimensional results given earlier in this context

・ロト ・ 理 ト ・ ヨ ト ・

Hypersurfaces Intersection index

An extrinsic constraint

Setup:

- \bar{M} , compact smooth manifold of dimension $n \ge 2$
- $X: \overline{M} \to \mathbb{R}^{n+p}, p \ge 1$, an immersion
- $M = X(\overline{M})$, compact connected submanifold without boundary immersed in Euclidean space
- g, Riemannian metric naturally induced on \bar{M}

Can view two-dimensional results given earlier in this context Result of Colbois-Dodziuk + Nash embedding theorem implies

$$\sup_M \lambda_1(M) \operatorname{Vol}(M)^{2/n} = \infty$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Hypersurfaces Intersection index

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let *M* be a compact convex hypersurface in \mathbb{R}^{n+1} . Then

 $\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n},$

where $\lambda_1(S^n) = n$ and $A(n) = \frac{(n+2)Vol(S^n)}{2Vol(S^{n-1})}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Hypersurfaces Intersection index

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let *M* be a compact convex hypersurface in \mathbb{R}^{n+1} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n},$$

where $\lambda_1(S^n) = n$ and $A(n) = \frac{(n+2)\operatorname{Vol}(S^n)}{2\operatorname{Vol}(S^{n-1})}$.

Proof uses barycentric methods and projection

イロン 不得 とくほ とくほう 一日

Hypersurfaces Intersection index

Replacing "convex"

Hypersurface M: intersection index is maximum number of collinear points in M

ヘロア ヘビア ヘビア・

ъ

Hypersurfaces Intersection index

Replacing "convex"

Hypersurface M: intersection index is maximum number of collinear points in M

Submanifold M^n in \mathbb{R}^{n+p} : intersection index of M is

$$i(M) = \sup_{\Pi} \# M \cap \Pi,$$

where Π runs over set of *p*-planes transverse to *M* in \mathbb{R}^{n+p}

ヘロン 人間 とくほ とくほ とう

ъ

Hypersurfaces Intersection index

Using the intersection index

Theorem (Colbois-D-El Soufi)

Let M^n be a compact immersed submanifold of a Euclidean space \mathbb{R}^{n+p} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \le A(n) \left(\frac{i(M)}{2}\right)^{1+\frac{2}{n}} \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n}.$$

ヘロン 人間 とくほ とくほ とう

Hypersurfaces Intersection index

Theorem (Colbois-D-El Soufi)

For every compact n-dimensional immersed submanifold M of \mathbb{R}^{n+p} and for every integer k,

$$\lambda_k(M)$$
 Vol $(M)^{2/n} \leq c(n)i(M)^{2/n}k^{2/n},$

where c(n) is an explicit constant depending only on the dimension n.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Hypersurfaces Intersection index

What does it all mean?

Combining Colbois-Dodziuk with our results in the extrinsic context says...

ヘロン ヘアン ヘビン ヘビン

Hypersurfaces Intersection index

What does it all mean?

Combining Colbois-Dodziuk with our results in the extrinsic context says...

Given a smooth manifold \overline{M} of dimension $n \ge 3$, there exist Riemannian metrics g of volume 1 on \overline{M} such that any immersion of \overline{M} into a Euclidean space \mathbb{R}^{n+p} which preserves gmust have a very large intersection index and volume which concentrates into a small Euclidean ball.

ヘロト ヘアト ヘビト ヘビト

Hypersurfaces Intersection index

Summary

 One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.

ヘロト ヘアト ヘビト ヘビト

Hypersurfaces Intersection index

Summary

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.

ヘロト ヘアト ヘビト ヘビト

Hypersurfaces Intersection index

Summary

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ₁ requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).

ヘロト ヘアト ヘビト ヘビト

Hypersurfaces Intersection index

Summary

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ₁ requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).
- Outlook
 - Are there other natural constraints, either of an intrinsic or extrinsic nature, that give interesting results?
 - When upper bounds exist, can we show that they are optimal?

Hypersurfaces Intersection index

References

- Bruno Colbois, Emily B. Dryden and Ahmad El Soufi, Extremal G-invariant eigenvalues of the Laplacian of G-invariant metrics, Math. Z. 258 (2008), 29–41.
- Bruno Colbois, Emily B. Dryden and Ahmad El Soufi, Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds, Bull. Lond. Math. Soc. 42 (2010), 96-108.
- Robert Osserman, *The isoperimetric inequality*, Bull. Amer. Math. Soc. 84 (1978), 1182–1238.

ヘロト 人間 ト ヘヨト ヘヨト