# Hearing Delzant polygons from the equivariant spectrum

Emily B. Dryden

**Bucknell University** 

AMS-AWM Special Session on Spectral Problems on Compact Riemannian Manifolds January 15, 2010

Joint work with Victor Guillemin and Rosa Sena-Dias

Emily B. Dryden Hearing Delzant polygons from the equivariant spectrum

## Outline







Emily B. Dryden Hearing Delzant polygons from the equivariant spectrum

イロト イポト イヨト イヨト

ъ

# Spectral geometry meets symplectic geometry

Abreu: Can one hear the shape of a Delzant polytope?

# Spectral geometry meets symplectic geometry

Abreu: Can one hear the shape of a Delzant polytope?

More rigorously...

- *M*<sup>2n</sup> is toric manifold, i.e., symplectic manifold with "compatible" T<sup>n</sup>-action
- g, toric Kähler metric on M
- Delzant/moment polytope associated to M

Abreu: Let *M* be a toric manifold equipped with a toric Kähler metric *g*. Does the spectrum of the Laplacian  $\Delta_g$  determine the moment polytope of *M*?

イロト 不得 とくほ とくほとう

-

## An Example

*M* = CP<sup>2</sup>, equipped with the Fubini-Study form ω<sub>FS</sub>
T<sup>2</sup>-action on CP<sup>2</sup> given by

$$(e^{i\theta_1}, e^{i\theta_2}) \cdot [z_0, z_1, z_2] = [z_0, e^{-i\theta_1}z_1, e^{-i\theta_2}z_2]$$

moment map

$$\phi[z_0, z_1, z_2] = \frac{1}{2} \left( \frac{|z_1|^2}{|z_0|^2 + |z_1|^2 + |z_2|^2}, \frac{|z_2|^2}{|z_0|^2 + |z_1|^2 + |z_2|^2} \right)$$

• moment polygon  $P = \phi(\mathbb{CP}^2)$ , is Delzant



Emily B. Dryden Hearing Delzant polygons from the equivariant spectrum

# Equivariant version of Abreu's question

Replace Laplace spectrum by equivariant Laplace spectrum Hamiltonian torus action gives  $\psi : \mathbb{T}^n \to Sympl(M)$ 

ヘロト 人間 ト ヘヨト ヘヨト

æ

# Equivariant version of Abreu's question

Replace Laplace spectrum by equivariant Laplace spectrum

Hamiltonian torus action gives  $\psi : \mathbb{T}^n \to Sympl(M)$ 

Fix  $\theta \in \mathbb{R}^n$  and  $\lambda \in \text{Spec}(M, g)$ . Then  $\psi(e^{i\theta})$  induces an action on eigenspace corresponding to  $\lambda$ .

Action splits according to weights

Equivariant spectrum = spectrum + weights of actions induced by  $\psi(e^{i\theta})$  on eigenspaces for all  $\theta \in \mathbb{R}^n$ 

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

# Equivariant version of Abreu's question

Replace Laplace spectrum by equivariant Laplace spectrum

Hamiltonian torus action gives  $\psi : \mathbb{T}^n \to Sympl(M)$ 

Fix  $\theta \in \mathbb{R}^n$  and  $\lambda \in \text{Spec}(M, g)$ . Then  $\psi(e^{i\theta})$  induces an action on eigenspace corresponding to  $\lambda$ .

Action splits according to weights

Equivariant spectrum = spectrum + weights of actions induced by  $\psi(e^{i\theta})$  on eigenspaces for all  $\theta \in \mathbb{R}^n$ 

Question: Does the equivariant spectrum determine the moment polytope?

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

#### The Main Result

#### Theorem (D–V. Guillemin–R. Sena-Dias)

Let M<sup>4</sup> be a toric symplectic manifold with a fixed torus action and a toric metric. Given the equivariant spectrum of M and the spectrum of the associated real manifold, we can reconstruct the moment polygon P of M up to two choices and up to translation for generic polygons with no more than 2 pairs of parallel sides.

・ 同 ト ・ ヨ ト ・ ヨ ト

1

# There exist such polygons

#### Theorem (D–V. Guillemin–R. Sena-Dias)

The set of all Delzant polygons in  $\mathbb{R}^2$  with  $d \ge 5$  sides and at most three pairs of parallel sides is a nonempty, proper open set in the set of all Delzant polygons in  $\mathbb{R}^2$ .

Note: All Delzant polygons with at least four sides have at least one pair of parallel sides.



#### Fixed point sets

Let  $\theta \in \mathbb{R}^n$ . What is the fixed point set  $F_{\theta}$  of  $\psi(e^{i\theta})$ ?

Emily B. Dryden Hearing Delzant polygons from the equivariant spectrum

イロト イポト イヨト イヨト

ъ

# Fixed point sets

Let  $\theta \in \mathbb{R}^n$ . What is the fixed point set  $F_{\theta}$  of  $\psi(e^{i\theta})$ ?

- $\theta$  generic:  $F_{\theta}$  is pre-image via moment map of vertices of P
- $\theta$  (nonzero) multiple of normal to facet of *P*:  $F_{\theta}$  contains union of pre-image of corresponding facet + pre-image of vertices of *P*
- any θ: F<sub>θ</sub> is union of pre-images of all faces to which it is normal with respect to face of lower codimension

ヘロト ヘアト ヘビト ヘビト

## Heat invariants

Donnelly (Math Ann., 1976) gave asymptotic expansion of heat trace in presence of isometry

Use this in our setting to show...

#### Proposition

For each non-generic  $\theta \in \mathbb{R}^n$ , the equivariant spectrum determines a volume and an unsigned normal vector corresponding to the face(s) of minimal codimension associated to  $F_{\theta}$ .

Note: unique face  $\Rightarrow$  volume of face; else, get sum of volumes of parallel faces

イロト イポト イヨト イヨト

-

## Spectral data for polygons

Equivariant spectrum + real spectrum give data  $\mathcal{D}$ :

- number of edges;
- (unsigned) normal directions to edges;
- sums of lengths of edges with each normal direction;
- volume of polygon

イロト イポト イヨト イヨト

## Polygon reconstruction from spectral data

#### Lemma (Most Obtuse Angle Lemma)

Given a list of vectors  $e_1, \ldots, e_d$  in  $\mathbb{R}^2$  which are known to be the edges of a convex polygon and  $u_1$  normal to  $e_1$ , there is a unique convex polygon  $P_{e_1,u_1}$  satisfying

- $0 \in P_{e_1,u_1};$
- $e_1 \in P_{e_1,u_1};$
- $u_1$  points outward from  $P_{e_1,u_1}$ ;
- the ordered list of edges of  $P_{e_1,u_1}$  is  $e_1, \ldots, e_d$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

#### How many possibilities?

Suppose given spectral data  $\mathcal{D}$  and allowable edge lists  $e_1, \ldots, e_d$  and  $-e_1, \ldots, -e_d$ . How many possible Delzant polygons are there?

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

# How many possibilities?

Suppose given spectral data  $\mathcal{D}$  and allowable edge lists  $e_1, \ldots, e_d$  and  $-e_1, \ldots, -e_d$ . How many possible Delzant polygons are there?

We can choose

- initial vector
- eign of initial vector
- sign of normal to initial vector

# How many possibilities?

Suppose given spectral data  $\mathcal{D}$  and allowable edge lists  $e_1, \ldots, e_d$  and  $-e_1, \ldots, -e_d$ . How many possible Delzant polygons are there?

#### We can choose

- initial vector
- eign of initial vector
- sign of normal to initial vector

This gives 4*d* possibilities.

一回 ト イヨト イヨト

# How many possibilities?

Suppose given spectral data  $\mathcal{D}$  and allowable edge lists  $e_1, \ldots, e_d$  and  $-e_1, \ldots, -e_d$ . How many possible Delzant polygons are there?

We can choose

- initial vector
- eign of initial vector
- sign of normal to initial vector

This gives 4*d* possibilities.

All are translates of  $P_{e_1,u_1}$  or  $P_{e_1,-u_1}$ .

# Genericity

Parallel sides introduce indeterminants:

- Know sum of lengths of edges in parallel pair
- On not know which normal directions in list are repeated
- In the second second

▲□→ ▲ 三→ ▲ 三→

# Genericity

Parallel sides introduce indeterminants:

- Know sum of lengths of edges in parallel pair
- ② Do not know which normal directions in list are repeated
- In the second second

Perturb if necessary

Generic: *P* has unique choice of repeated normals and does not contain subpolygons

# Open questions and future directions

- Optimality of results
  - Can the two possibilities be distinguished using spectral data?
  - Are the genericity assumptions necessary?
- Generalization to higher-dimensional polytopes
- What can we say about the metric?
- Inverse problem for generic toric orbifolds