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Historical Motivation

Chemistry: identify elements by spectral “fingerprints”

Physics: development of quantum mechanics

Mathematics: how are knowledge of structure and
knowledge of spectrum related?
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A wise man once said...

Sir Arthur Schuster, 1882:

We know a great deal more about the forces which produce the
vibrations of sound than about those which produce the
vibrations of light. To find out the different tunes sent out by a
vibrating system is a problem which may or may not be solvable
in certain special cases, but it would baffle the most skillful
mathematician to solve the inverse problem and to find out the
shape of a bell by means of the sounds which it is capable of
sending out. And this is the problem which ultimately
spectroscopy hopes to solve in the case of light. In the
meantime we must welcome with delight even the smallest step
in the desired direction.
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String Setup

String of length L with uniform density and tension
Fix endpoints of string
Pluck the string:

L

x

y

Describe motion of string with function f (x , t)
Wave equation:

∂2f
∂t2 =

∂2f
∂x2

acceleration curvature
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Solving the Wave Equation

Look for stationary solutions: f (x , t) = g(x)h(t)

Substitute such a solution into wave equation
(

∂2f
∂t2 = ∂2f

∂x2

)

to
get

g(x)h′′(t) = g′′(x)h(t)

or
h′′(t)
h(t)

=
g′′(x)

g(x)

= −λ
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Solving two equations

Rewrite h′′(t)
h(t) = g′′(x)

g(x) = −λ as

1 g′′(x) = −λg(x)

2 h′′(t) = −λh(t)

General solutions are
1 g(x) = A sin

√
λx + B cos

√
λx

2 h(t) = C sin
√

λt + D cos
√

λt

Boundary conditions imply
1 g(x) = A sin

√
λx ,

√
λL = nπ

2 h(t) = C sin
√

λt + D cos
√

λt
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Restrictions on λ

We have
√

λL = nπ from boundary conditions on g(x)

Frequency of oscillation given by h(t) is
√

λ
2π

Thus

frequency =

√
λ

2π
=

n
2L

,

and the string is allowed to vibrate at frequencies 1
2L , 2

2L , 3
2L , . . .
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Waveforms

Specific waveforms oscillate at specific frequencies
1

2L , 2
2L , 3

2L , . . .

L

L

Waveforms form basis for vector space of motion functions
f (x , t)

Can “hear” the shape (length) of a string!
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Drum Setup

D = compact domain in Euclidean plane

D���
���
���
���

���
���
���
���

x

z

y

Describe motion with function f (x , y , t)
∂2f
∂t2 = ∂2f

∂x2 + ∂2f
∂y2 := ∆f

Sound of drum given by list of frequencies associated to
waveforms f (x , y , t) = g(x , y)h(t)

Vibration frequencies = Eigenvalues of ∆ on D
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Can one hear the shape of a drum?

Cannot hear the shape of a drum

2
D D

1

Can hear area and perimeter of drumhead
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We begin again. . .

M is a compact Riemannian manifold

∆ = −div grad

How much geometric information about M is encoded in
the eigenvalue spectrum of ∆?
Some answers:

dimension
volume
M = surface: Euler characteristic, hence genus
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What is an orbifold?

Manifolds

M/Γ, where Γ is a group acting “nicely” on a manifold M

M = S2

Γ is group of rotations of order 3 about north-south axis
M/Γ is a (3, 3)-football
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“Bad” Orbifolds

Zp-teardrop: topologically a 2-sphere, with a single cone point
of order p
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Riemannian Orbifolds

Construction of Riemannian metric on O:

define metric locally via coordinate charts

patch together

must be invariant under local group actions

Define objects like function and Laplacian locally

Laplacian is well-behaved on orbifolds:

Spec(O) = 0 ≤ λ1 < λ2 < λ3 < · · · ↑ ∞
Each eigenvalue λi has finite multiplicity.

Orthonormal basis of L2(O) composed of smooth
eigenfunctions
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The Big Question

O = compact Riemannian orbifold
∆ = −div grad (locally)

How much topological or geometric information about O is
encoded in the eigenvalue spectrum of ∆?

Answers:

dimension

volume

orbisurfaces: genus???

isotropy type???
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Heating Things Up

Heat operator L on O defined by L = ∆ + ∂/∂t

Heat equation: Lu = 0

We say that K : (0,∞) × O × O → R is a fundamental solution
of the heat equation, or heat kernel, if it satisfies:

1 K is C0 in the three variables, C1 in the first, and C2 in the
second;

2 ( ∂
∂t + ∆x)K (t , x , y) = 0 where ∆x is the Laplacian with

respect to the second variable;
3 limt→0+ K (t , x , ·) = δx for all x ∈ O.
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Asymptotic Expansion of Heat Trace

Theorem (D-Gordon-Greenwald-Webb)

Let O be a Riemannian orbifold and let λ1 ≤ λ2 ≤ . . . be the
spectrum of the associated Laplacian acting on smooth
functions on O. The heat trace

∑∞
j=1 e−λj t of O is asymptotic

as t → 0+ to

I0 +
∑

N∈S(O)

IN
|Ist(N)| (1)

where S(O) is the set of C-strata of O. This asymptotic
expansion is of the form

(4πt)−dim(O)/2
∞
∑

j=0

cj t
j
2 . (2)
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Huh?!?

I0 is the “smooth” part, i.e.

I0 = (4πt)−dim(O)/2
∞
∑

k=0

ak(O)tk

ak (O) are the usual heat invariants, e.g.

a0(O) = vol(O)

a1(O) = 1
6

∫

O τ(x)dvolO(x)

If O is finitely covered by a Riemannian manifold M, say
O = G\M, then

ak(O) =
1
|G|ak (M).
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The Singular Part

IN is the “singular” part:

IN =
∑

γ∈Ist∗(N)

IN,γ

where

IN,γ := (4πt)−dim(N)/2
∞
∑

k=0

tk
∫

N
bk (γ, x)d volN(x).

The bk ’s depend on the germ of γ (considered as an isometry
of O) and on the Riemannian metric.
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A Simple Application

Theorem (D-Gordon-Greenwald-Webb)

Let O be a Riemannian orbifold with singularities. If O is
even-dimensional (respectively, odd-dimensional) and some
C-stratum of the singular set is odd-dimensional (respectively,
even-dimensional), then O cannot be isospectral to a
Riemannian manifold.
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Calculating Heat Invariants for 2-Orbifolds

Let O be an orientable two-dimensional orbifold with k cone
points of orders m1, · · · , mk . Then the first few terms in the
asymptotic expansion are:

degree -1 term:
a0 = vol(O)

degree 0 term:

χ(O)

6
+

k
∑

i=1

m2
i − 1

12mi

degree 1 term:

a2

4π
+

k
∑

i=1

R1212(m4
i + 10m2

i − 11)

360mi
,

where a2(O) = 1
360

∫

O(2|R|2 − 2|ρ|2 + 5τ2)dvolO(g)
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Teardrops and Footballs

Theorem (D-Gordon-Greenwald-Webb)

Within the class of all footballs (good or bad) and all teardrops,
the spectral invariant c is a complete topological invariant. I.e.,
c determines whether the orbifold is a football or teardrop and
determines the orders of the cone points.
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Idea of Proof

Define a spectral invariant c as 12 times the degree zero term:

c = 2χ(O) +

k
∑

i=1

(mi −
1
mi

)

For a teardrop with one cone point of order m, we have

c(m) = 2 + m +
1
m

.

For a football with cone points of order r and s, we have

c(r , s) = r + s +
1
r

+
1
s
.

When is the invariant an integer?
Emily B. Dryden Hearing the geometry of orbifolds
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We claim that footballs are distinguishable from teardrops.
Suppose c(m) = c(r , s). Then

m + 2 = r + s (3)
1
m

=
1
r

+
1
s

(4)

Contradiction!

Claim: c(r , s) determines r and s

Read off r + s and 1
r + 1

s = r+s
rs

c(r , s) determines r + s and rs

(r − s)2 = (r + s)2 − 4rs, so c(r , s) determines |r − s|
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Nonnegative Euler Characteristic

Theorem

Let C be the class consisting of all closed orientable 2-orbifolds
with χ(O) ≥ 0. The spectral invariant c is a complete
topological invariant within C and moreover, it distinguishes the
elements of C from smooth oriented closed surfaces.
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Weighted Projective Spaces

Let N = (N1, . . . , Nm+1) be a vector of positive integers which
are pairwise relatively prime. The weighted projective space

CPm(N) := CPm(N1, . . . , Nm+1) := (Cm+1)∗/ ∼ ,

where

((z1, . . . , zm+1) ∼ (λN1z1, . . . , λ
Nm+1zm+1), λ ∈ C

∗) ,

is a compact orbifold. It has m + 1 isolated singularities at the
points [1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1], with isotropy groups
ZN1

, . . . , ZNm+1
.

Note that CPm(1) is the usual smooth projective space CPm.
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Heat Invariants for Weighted Projective Planes

O = CP2(N1, N2, N3) is a weighted projective plane

N1, N2, N3 pairwise relatively prime

Then the first few terms in the asymptotic expansion are:

degree -2 term: a0 = vol(O)

degree -1 term: a1 = 1
6

∫

O τdvolO(g)

degree 0 term: a2
16π2 + b0, where

a2(O) =
1

360

∫

O
(2|R|2 − 2|ρ|2 + 5τ2)dvolO(g)

and b0 involves N1, N2, N3.

Emily B. Dryden Hearing the geometry of orbifolds



Spectral Geometry
Orbifolds

Tools and Results
Summary

Heat Invariants
A Simple Application
Applications to 2-Orbifolds
Applications to 4-Orbifolds

Listening to Weighted Projective Planes

Theorem (Abreu-D-Freitas-Godinho)

Let M := CP2(N1, N2, N3) be a four-dimensional weighted
projective space with isolated singularities, equipped with any
Kähler orbifold metric. Then the spectra of its Laplacian acting
on functions and 1-forms determine the weights N1, N2 and N3.

Tools in Proof:

Heat invariants

Localization in equivariant cohomology

Expression for Kähler metrics

Elementary number theory
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Summary

Big Question: How much topological or geometric
information about an object is encoded in the eigenvalue
spectrum of ∆?

We have an asymptotic expansion of the heat trace for
orbifolds.

The heat invariants can be combined with other tools to tell
us that certain classes of orbifolds contain objects that are
spectrally distinguished.

Outlook
Other classes of orbifolds to which this strategy could be
successfully applied?
Examples of isospectral orbifolds with “interesting” features
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