Eigenvalue (mis)behavior on manifolds

Emily B. Dryden

Bucknell University

Dartmouth College May 7, 2009

Outline

- Isoperimetric inequalities
- Upper bounds on eigenvalues for manifolds
- Metrics invariant under a group action
- Submanifolds

 The Problem of Queen Dido: maximize the size of Carthage

- The Problem of Queen Dido: maximize the size of Carthage
- What about closed curves?

- The Problem of Queen Dido: maximize the size of Carthage
- What about closed curves?
 - planar
 - simple
 - fix length L, maximize area A

- The Problem of Queen Dido: maximize the size of Carthage
- What about closed curves?
 - planar
 - simple
 - fix length L, maximize area A
 - "The" isoperimetric inequality:

$$L^2 \geq 4\pi A$$

Generalizations

• \mathbb{R}^n : minimize surface area among domains with fixed volume

Generalizations

- Rⁿ: minimize surface area among domains with fixed volume
- Mathematical physics: a physical quantity is extremal for a circular or spherical domain

An example

Setup:

- domain $D \subset \mathbb{R}^2$
- $f: D \to \mathbb{R}$, a smooth function which equals zero on the boundary of D

An example

Setup:

- domain $D \subset \mathbb{R}^2$
- $f: D \to \mathbb{R}$, a smooth function which equals zero on the boundary of D

Seek solutions to $\Delta f = \lambda f$

Especially interested in λ_1

The Rayleigh quotient for domains

Theorem

Let D be a domain with Δ acting on piecewise smooth, nonzero functions f which are zero on the boundary of D, and with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$. For any such f,

$$\lambda_1 \le \frac{\int_D |\nabla f|^2}{\int_D f^2},$$

with equality if and only if f is an eigenfunction of λ_1 .

Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.

Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.

Higher-dimensional analog: Rayleigh quotient attains minimum iff $D \subset \mathbb{R}^n$ is sphere

The Rayleigh quotient for manifolds

Setup:

- (M, g), compact Riemannian manifold
- Δ , Laplace operator on (M, g)
- Eigenvalues of ∆ are

$$0=\lambda_0<\lambda_1\leq\lambda_2\leq\cdots$$

The Rayleigh quotient for manifolds

Setup:

- (M, g), compact Riemannian manifold
- Δ , Laplace operator on (M, g)
- Eigenvalues of Δ are

$$0=\lambda_0<\lambda_1\leq\lambda_2\leq\cdots$$

Rayleigh quotient:

$$\lambda_1(M) = \inf_{f \in \mathcal{F}_1} \frac{\int_M |\nabla f|^2}{\int_M f^2},$$

where \mathcal{F}_1 is set of smooth nonzero functions on M orthogonal to the constant functions

Hersch's Theorem

Theorem (Hersch)

Consider the sphere S² equipped with any Riemannian metric g. We have

$$\lambda_1 Vol(g) \leq 8\pi$$
,

with equality only in the case of the constant curvature metric.

Idea of proof: Move S^2 to its center of mass, and use coordinate functions as test functions in the Rayleigh quotient.

Compact orientable surfaces

Theorem (Yang-Yau)

Let (M,g) be a compact orientable surface of genus γ . Then

$$\lambda_1(g)\mathit{Vol}(g) \leq 8\pi \left\lfloor rac{\gamma+3}{2}
ight
floor.$$

Compact orientable surfaces

Theorem (Yang-Yau)

Let (M, g) be a compact orientable surface of genus γ . Then

$$\lambda_1(g) \mathit{Vol}(g) \leq 8\pi \left\lfloor rac{\gamma+3}{2}
ight
floor.$$

Generalized to nonorientable surfaces by Li-Yau

What's changed?

Theorem (Korevaar)

Let (M, g) be a compact orientable surface of genus γ , and let C > 0 be a universal constant. For every integer $k \ge 1$,

$$\lambda_k(g) Vol(g) \leq C(\gamma + 1)k.$$

What's changed?

Theorem (Korevaar)

Let (M, g) be a compact orientable surface of genus γ , and let C > 0 be a universal constant. For every integer $k \ge 1$,

$$\lambda_k(g) Vol(g) \leq C(\gamma + 1)k.$$

Open questions abound, e.g., *optimal* bound for λ_2 on Klein bottle or surface of genus 2

Dimension 3

Bleecker: For every $n \ge 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.

Dimension 3

Bleecker: For every $n \ge 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.

Theorem (Colbois-Dodziuk)

Let (M^n, g) be a compact, closed, connected manifold of dimension at least three. Then

$$\sup \lambda_1(g) \operatorname{Vol}(g)^{2/n} = \infty,$$

where the supremum is taken over all Riemannian metrics g on M.

• Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant

- Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant
- Form connected sum of Sⁿ and M

- Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to M, contains submanifold Ω naturally identified with $S^n \setminus B_\rho$

- Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to M, contains submanifold Ω naturally identified with Sⁿ \ B_ρ
- Take arbitrary metric g₁ on M whose restriction to Ω equals g₀ restricted to Ω, make g₁ really small on most of M \ Ω without changing it on Ω

- Use Bleecker's result: take (S^n, g_0) such that $Vol(S^n, g_0) = 1$ and $\lambda_1(g_0) \ge k + 1$, where k is a large constant
- Form connected sum of Sⁿ and M
- Connected sum is diffeomorphic to M, contains submanifold Ω naturally identified with Sⁿ \ B_ρ
- Take arbitrary metric g₁ on M whose restriction to Ω equals g₀ restricted to Ω, make g₁ really small on most of M \ Ω without changing it on Ω
- M "looks like" (S^n, g_0) , and λ_1 for modified g_1 is like $\lambda_1(g_0)$

Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!

Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!

- intrinsic constraints: restrict to conformal class of metrics, to projective Kähler metrics, to metrics which preserve the symplectic or Kähler structure, etc.
- extrinsic constraints: mean curvature (Reilly's inequality)

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g) \text{Vol}(g)$ is unbounded in general

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let \triangle act on S^1 -invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g) \text{Vol}(g)$ is unbounded in general but **is** bounded if we only consider metrics arising from *embeddings* of S^2 in \mathbb{R}^3

Tweak Hersch's assumptions:

- consider the subset of S¹-invariant metrics
- let Δ act on S^1 -invariant functions
- ullet resulting eigenvalues denoted $\lambda_k^{\mathcal{S}^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g) \text{Vol}(g)$ is unbounded in general but **is** bounded if we only consider metrics arising from *embeddings* of S^2 in \mathbb{R}^3

Bound is attained by the union of two disks of equal area

What happens for higher-dimensional spheres?

• replace S^1 by O(n)

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres
- let Δ act on O(n)-invariant functions
- consider O(n)-invariant metrics on S^n arising from *embeddings* of S^n in \mathbb{R}^{n+1}

What happens for higher-dimensional spheres?

- replace S^1 by O(n)
- have "hypersurfaces of revolution" diffeomorphic to hyperspheres
- let Δ act on O(n)-invariant functions
- consider O(n)-invariant metrics on S^n arising from *embeddings* of S^n in \mathbb{R}^{n+1}

Theorem (Colbois-D-El Soufi)

Let (S^n, g) be as above, with Vol(g) = 1. Then, for all $k \in \mathbb{Z}$,

$$\lambda_k^{O(n)}(g) < \lambda_k^{O(n)}(D^n) Vol(D^n)^{2/n},$$

where D^n is the Euclidean n-ball of volume 1/2.

What about any manifold, not just spheres?

- replace S^n by ccc manifold M of dimension $n \ge 3$
- replace O(n) by finite subgroup G of group of diffeomorphisms acting on M
- let Δ act on G-invariant functions
- consider G-invariant metrics on M

What about any manifold, not just spheres?

- replace S^n by ccc manifold M of dimension $n \ge 3$
- replace O(n) by finite subgroup G of group of diffeomorphisms acting on M
- let Δ act on G-invariant functions
- consider G-invariant metrics on M

Then $\lambda_1^G(g) \text{Vol}(g)^{2/n}$ is unbounded!

Proof: apply Colbois-Dodziuk "equivariantly"

Dropping one hypothesis

- ccc manifold M of dimension $n \ge 3$
- discrete group G acting on M
- consider G-invariant metrics on M

Dropping one hypothesis

- ccc manifold M of dimension $n \ge 3$
- discrete group G acting on M
- consider G-invariant metrics on M

Open Question: Does $\lambda_1(g) \text{Vol}(g)^{2/n}$ become arbitrarily large?

An extrinsic constraint

Hypersurfaces: curve in plane, two-dimensional surface in $\ensuremath{\mathbb{R}}^3$

Submanifolds: equator in S^2 , manifold in \mathbb{R}^k for k sufficiently large

An extrinsic constraint

Hypersurfaces: curve in plane, two-dimensional surface in $\ensuremath{\mathbb{R}}^3$

Submanifolds: equator in S^2 , manifold in \mathbb{R}^k for k sufficiently large

Why extrinsic?

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in \mathbb{R}^{n+1} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n},$$

where
$$\lambda_1(S^n) = n$$
 and $A(n) = \frac{(n+2) Vol(S^n)}{2 Vol(S^{n-1})}$.

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in \mathbb{R}^{n+1} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n},$$

where
$$\lambda_1(S^n) = n$$
 and $A(n) = \frac{(n+2) Vol(S^n)}{2 Vol(S^{n-1})}$.

Why is there no mention of a metric?

Spheres appear again

Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in \mathbb{R}^{n+1} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n},$$

where
$$\lambda_1(S^n) = n$$
 and $A(n) = \frac{(n+2) Vol(S^n)}{2 Vol(S^{n-1})}$.

Why is there no mention of a metric?

Proof uses barycentric methods and projection

Replacing "convex"

Hypersurface M: intersection index is maximum number of collinear points in M

Replacing "convex"

Hypersurface M: intersection index is maximum number of collinear points in M

Submanifold M^n in \mathbb{R}^{n+p} : intersection index of M is

$$i(M) = \sup_{\Pi} \# M \cap \Pi,$$

where Π runs over set of p-planes transverse to M in \mathbb{R}^{n+p}

Using the intersection index

Theorem (Colbois-D-El Soufi)

Let M^n be a compact immersed submanifold of a Euclidean space \mathbb{R}^{n+p} . Then

$$\lambda_1(M) \operatorname{Vol}(M)^{2/n} \leq A(n) \left(\frac{i(M)}{2}\right)^{1+\frac{2}{n}} \lambda_1(S^n) \operatorname{Vol}(S^n)^{2/n}.$$

• One physical isoperimetric problem is to extremize λ_1 subject to certain constraints, the most basic of which is the volume of the manifold.

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ_1 requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).

- One physical isoperimetric problem is to extremize λ₁ subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ_1 requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).
- Outlook
 - Are there other natural constraints, either of an intrinsic or extrinsic nature, that give interesting results?
 - When upper bounds exist, can we show that they are optimal?

References

- Bruno Colbois, Emily B. Dryden and Ahmad El Soufi, Extremal G-invariant eigenvalues of the Laplacian of G-invariant metrics, Math. Z. 258 (2008), 29–41.
- Bruno Colbois, Emily B. Dryden and Ahmad El Soufi, Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds, submitted.
- Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182–1238.