Listening to orbifolds: What does the Laplace spectrum tell us?

Emily B. Dryden

Department of Mathematics
Bucknell University

Penn State Altoona May 9, 2008

Outline

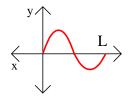
- Spectral Geometry
 - Historical Motivation
 - Vibrating Strings
 - Drums
 - Manifolds
- Orbifolds
 - Definitions and Examples
 - The Big Question
- Tools and Results
 - Heat Invariants
 - A Simple Application
 - Applications to 2-Orbifolds
 - Applications to 4-Orbifolds

Historical Motivation

- Chemistry: identify elements by spectral "fingerprints"
- Physics: development of quantum mechanics
- Mathematics: how are knowledge of structure and knowledge of spectrum related?

String Setup

String of length *L* with fixed endpoints Pluck the string:



Describe motion of string with function f(x, t) Wave equation:

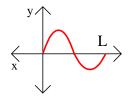
$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial^2 f}{\partial x^2}$$

acceleration

curvature

String Setup

String of length *L* with fixed endpoints Pluck the string:



Describe motion of string with function f(x, t) Wave equation:

$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial^2 f}{\partial x^2}$$

acceleration

curvature

- Look for waveforms, i.e., solutions f(x, t) such that f(x, t) = g(x)h(t)
- Specific waveforms oscillate at specific frequencies

 ¹/_{2L}, ²/_{2L}, ³/_{2L}, ...
- Waveforms form basis for vector space of motion functions f(x,t)
- Can "hear" the length of a string!

- Look for waveforms, i.e., solutions f(x, t) such that f(x, t) = g(x)h(t)
- Specific waveforms oscillate at specific frequencies

 ¹/_{2L}, ²/_{2L}, ³/_{2L}, ...
- Waveforms form basis for vector space of motion functions f(x, t)
- Can "hear" the length of a string!

- Look for waveforms, i.e., solutions f(x, t) such that f(x, t) = g(x)h(t)
- Specific waveforms oscillate at specific frequencies

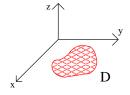
 ¹/_{2L}, ²/_{2L}, ³/_{2L}, ...
- Waveforms form basis for vector space of motion functions f(x, t)
- Can "hear" the length of a string!

- Look for waveforms, i.e., solutions f(x, t) such that f(x, t) = g(x)h(t)
- Specific waveforms oscillate at specific frequencies

 ¹/_{2L}, ²/_{2L}, ³/_{2L}, ...
- Waveforms form basis for vector space of motion functions f(x, t)
- Can "hear" the length of a string!

Drum Setup

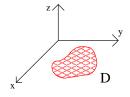
D = compact domain in Euclidean plane



- Describe motion with function f(x, y, t)
- Sound of drum given by list of frequencies associated to waveforms f(x, y, t) = g(x, y)h(t)
- Vibration frequencies = Eigenvalues of \triangle on D

Drum Setup

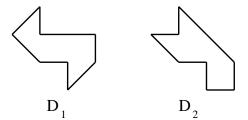
D = compact domain in Euclidean plane



- Describe motion with function f(x, y, t)
- Sound of drum given by list of frequencies associated to waveforms f(x, y, t) = g(x, y)h(t)
- Vibration frequencies = Eigenvalues of Δ on D

Can one hear the shape of a drum?

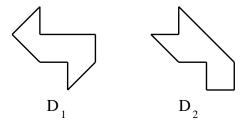
Cannot hear the shape of a drum



Can hear area and perimeter of drumhead

Can one hear the shape of a drum?

Cannot hear the shape of a drum



Can hear area and perimeter of drumhead

We begin again...

- M is a compact Riemannian manifold
- $\Delta = -div \ grad$
- How much geometric information about M is encoded in the eigenvalue spectrum of Δ?
- Answers:
 - dimension
 - volume
 - *M* = surface: Euler characteristic, hence genus

We begin again...

- M is a compact Riemannian manifold
- $\Delta = -div \ grad$
- How much geometric information about M is encoded in the eigenvalue spectrum of Δ?
- Answers:
 - dimension
 - volume
 - M = surface: Euler characteristic, hence genus

We begin again...

- M is a compact Riemannian manifold
- $\Delta = -div \ grad$
- How much geometric information about M is encoded in the eigenvalue spectrum of Δ?
- Answers:
 - dimension
 - volume
 - M = surface: Euler characteristic, hence genus

What is an orbifold?

Manifolds

- M/Γ , where Γ is a group acting "nicely" on a manifold M
- M = S²
 Γ is group of rotations of order 3 about north-south axis
 M/Γ is a (3,3)-football

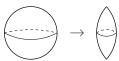
What is an orbifold?

- Manifolds
- M/Γ, where Γ is a group acting "nicely" on a manifold M
- $M = S^2$ Γ is group of rotations of order 3 about north-south axis M/Γ is a (3, 3)-football

What is an orbifold?

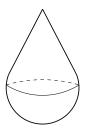
- Manifolds
- M/Γ, where Γ is a group acting "nicely" on a manifold M
- $M = S^2$

 Γ is group of rotations of order 3 about north-south axis M/Γ is a (3,3)-football



"Bad" Orbifolds

 \mathbb{Z}_p -teardrop: topologically a 2-sphere, with a single cone point of order p



Riemannian Orbifolds

Construction of Riemannian metric on O:

- define metric locally via coordinate charts
- patch together
- must be invariant under local group actions

Define objects like function and Laplacian locally

Laplacian is well-behaved on orbifolds

- Spec(0) = $0 \le \lambda_1 < \lambda_2 < \lambda_3 < \cdots \uparrow \infty$
- Each eigenvalue λ_i has finite multiplicity
- Orthonormal basis of L²(O) composed of smooth eigenfunctions

Riemannian Orbifolds

Construction of Riemannian metric on O:

- define metric locally via coordinate charts
- patch together
- must be invariant under local group actions

Define objects like function and Laplacian locally

Laplacian is well-behaved on orbifolds:

- Spec(0) = $0 \le \lambda_1 < \lambda_2 < \lambda_3 < \cdots \uparrow \infty$
- Each eigenvalue λ_i has finite multiplicity.
- Orthonormal basis of L²(O) composed of smooth eigenfunctions

The Big Question

O = compact Riemannian orbifold

 $\Delta = -div \ grad \ (locally)$

How much topological or geometric information about O is encoded in the eigenvalue spectrum of Δ ?

Answers

- dimension
- volume
- orbisurfaces: genus???
- isotropy type???

The Big Question

O = compact Riemannian orbifold

 $\Delta = -div \ grad \ (locally)$

How much topological or geometric information about O is encoded in the eigenvalue spectrum of Δ ?

Answers:

- dimension
- volume
- orbisurfaces: genus???
- isotropy type???

Asymptotic Expansion of Heat Trace

Theorem (D-Gordon-Greenwald-Webb)

Let O be a Riemannian orbifold and let $\lambda_1 \leq \lambda_2 \leq \ldots$ be the spectrum of the associated Laplacian acting on smooth functions on O. The heat trace $\sum_{j=1}^{\infty} e^{-\lambda_j t}$ of O is asymptotic as $t \to 0^+$ to

$$I_0 + \sum_{N \in S(O)} \frac{I_N}{|Ist(N)|} \tag{1}$$

where S(O) is the set of C-strata of O. This asymptotic expansion is of the form

$$(4\pi t)^{-dim(O)/2} \sum_{j=0}^{\infty} c_j t^{\frac{j}{2}}.$$
 (2)

Huh?!?

 I_0 is the "smooth" part, i.e.

$$I_0 = (4\pi t)^{-\dim(O)/2} \sum_{k=0}^{\infty} a_k(O) t^k$$

 $a_k(O)$ are the usual heat invariants, e.g.

- $a_0(0) = vol(0)$
- $a_1(0) = \frac{1}{6} \int_{0} \tau(x) dvol_{0}(x)$
- If O is finitely covered by a Riemannian manifold M, say
 O = G\M, then

$$a_k(O) = \frac{1}{|G|} a_k(M)$$

Huh?!?

 I_0 is the "smooth" part, i.e.

$$I_0 = (4\pi t)^{-\dim(O)/2} \sum_{k=0}^{\infty} a_k(O) t^k$$

 $a_k(O)$ are the usual heat invariants, e.g.

- $a_0(O) = vol(O)$
- $a_1(O) = \frac{1}{6} \int_O \tau(x) dvol_O(x)$
- If O is finitely covered by a Riemannian manifold M, say
 O = G\M, then

$$a_k(O) = \frac{1}{|G|}a_k(M).$$

The Singular Part

 I_N is the "singular" part:

$$I_{\mathcal{N}} = \sum_{\gamma \in \mathit{Ist}^*(\mathcal{N})} I_{\mathcal{N},\gamma}$$

where

$$I_{N,\gamma} := (4\pi t)^{-dim(N)/2} \sum_{k=0}^{\infty} t^k \int_N b_k(\gamma, x) d \operatorname{vol}_N(x).$$

The b_k 's depend on the germ of γ (considered as an isometry

of O) and on the Riemannian metric

The Singular Part

 I_N is the "singular" part:

$$I_{\mathcal{N}} = \sum_{\gamma \in \mathit{Ist}^*(\mathcal{N})} I_{\mathcal{N},\gamma}$$

where

$$I_{N,\gamma} := (4\pi t)^{-\dim(N)/2} \sum_{k=0}^{\infty} t^k \int_N b_k(\gamma, x) d \operatorname{vol}_N(x).$$

The b_k 's depend on the germ of γ (considered as an isometry

of O) and on the Riemannian metric.

A Simple Application

Theorem (D-Gordon-Greenwald-Webb)

Let O be a Riemannian orbifold with singularities. If O is even-dimensional (respectively, odd-dimensional) and some C-stratum of the singular set is odd-dimensional (respectively, even-dimensional), then O cannot be isospectral to a Riemannian manifold.

Calculating Heat Invariants for 2-Orbifolds

Let O be an orientable two-dimensional orbifold with k cone points of orders m_1, \dots, m_k . Then the first few terms in the asymptotic expansion are:

degree -1 term:

$$a_0 = vol(O)$$

degree 0 term:

$$\frac{\chi(0)}{6} + \sum_{i=1}^{K} \frac{m_i^2 - 1}{12m_i}$$

degree 1 term:

$$\frac{a_2}{4\pi} + \sum_{i=1}^{k} \frac{R_{1212}(m_i^4 + 10m_i^2 - 11)}{360m_i},$$

where
$$a_2(0) = \frac{1}{360} \int_{O} (2|R|^2 - 2|\rho|^2 + 5\tau^2) dvol_{O}(g)$$

Teardrops and Footballs

Theorem (D-Gordon-Greenwald-Webb)

Within the class of all footballs (good or bad) and all teardrops, the spectral invariant c is a complete topological invariant. I.e., c determines whether the orbifold is a football or teardrop and determines the orders of the cone points.

Idea of Proof

Define a spectral invariant *c* as 12 times the degree zero term:

$$c = 2\chi(0) + \sum_{i=1}^{k} (m_i - \frac{1}{m_i})$$

For a teardrop with one cone point of order *m*, we have

$$c(m)=2+m+\frac{1}{m}.$$

For a football with cone points of order *r* and *s*, we have

$$c(r,s)=r+s+\frac{1}{r}+\frac{1}{s}.$$

When is the invariant an integer?

Suppose c(m) = c(r, s). Then

$$m+2 = r+s (3)$$

$$\frac{1}{m} = \frac{1}{r} + \frac{1}{s} \tag{4}$$

Contradiction!

Claim: c(r, s) determines r and s

- Read off r + s and $\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}$
- c(r, s) determines r + s and rs
- $(r-s)^2 = (r+s)^2 4rs$, so c(r,s) determines |r-s|

Suppose c(m) = c(r, s). Then

$$m+2 = r+s (3)$$

$$\frac{1}{m} = \frac{1}{r} + \frac{1}{s} \tag{4}$$

Contradiction!

Claim: c(r, s) determines r and s

- Read off r + s and $\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}$
- c(r, s) determines r + s and rs
- $(r-s)^2 = (r+s)^2 4rs$, so c(r,s) determines |r-s|

Suppose c(m) = c(r, s). Then

$$m+2 = r+s \tag{3}$$

$$\frac{1}{m} = \frac{1}{r} + \frac{1}{s} \tag{4}$$

Contradiction!

Claim: c(r, s) determines r and s

- Read off r + s and $\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}$
- c(r, s) determines r + s and rs
- $(r-s)^2 = (r+s)^2 4rs$, so c(r,s) determines |r-s|

Nonnegative Euler Characteristic

Theorem

Let C be the class consisting of all closed orientable 2-orbifolds with $\chi(O) \geq 0$. The spectral invariant c is a complete topological invariant within C and moreover, it distinguishes the elements of C from smooth oriented closed surfaces.

Weighted Projective Spaces

Let $\mathbf{N} = (N_1, \dots, N_{m+1})$ be a vector of positive integers which are pairwise relatively prime. The weighted projective space

$$\mathbb{C}P^m(\mathbf{N}) := \mathbb{C}P^m(N_1, \dots, N_{m+1}) := (\mathbb{C}^{m+1})^*/\sim,$$

where

$$((z_1,\ldots,z_{m+1})\sim(\lambda^{N_1}z_1,\ldots,\lambda^{N_{m+1}}z_{m+1}),\,\lambda\in\mathbb{C}^*),$$

is a compact orbifold. It has m+1 isolated singularities at the points $[1:0:\cdots:0],\ldots,[0:\cdots:0:1]$, with isotropy groups $\mathbb{Z}_{N_1},\ldots,\mathbb{Z}_{N_{m+1}}$.

Note that $\mathbb{C}P^m(1)$ is the usual smooth projective space $\mathbb{C}P^m$.

Heat Invariants for Weighted Projective Planes

 $O = \mathbb{C}P^2(N_1, N_2, N_3)$ is a weighted projective plane

 N_1, N_2, N_3 pairwise relatively prime

Then the first few terms in the asymptotic expansion are:

- degree -2 term: $a_0 = vol(O)$
- degree -1 term: $a_1 = \frac{1}{6} \int_{\mathcal{O}} \tau dvol_{\mathcal{O}}(g)$
- degree 0 term: $\frac{a_2}{16\pi^2} + b_0$, where

$$a_2(0) = \frac{1}{360} \int_{O} (2|R|^2 - 2|\rho|^2 + 5\tau^2) dvol_{O}(g)$$

and b_0 involves N_1, N_2, N_3 .

Listening to Weighted Projective Planes

Theorem (Abreu-D-Freitas-Godinho)

Let $M := \mathbb{C}P^2(N_1, N_2, N_3)$ be a four-dimensional weighted projective space with isolated singularities, equipped with any Kähler orbifold metric. Then the spectra of its Laplacian acting on functions and 1-forms determine the weights N_1 , N_2 and N_3 .

Tools in Proof

- Heat invariants
- Localization in equivariant cohomology
- Expression for Kähler metrics
- Elementary number theory

Summary

- Big Question: How much topological or geometric information about an object is encoded in the eigenvalue spectrum of Δ?
- We have an asymptotic expansion of the heat trace for orbifolds.
- The heat invariants can be combined with other tools to tell us that certain classes of orbifolds contain objects that are spectrally distinguished.
- Outlook
 - Other classes of orbifolds to which this strategy could be successfully applied?
 - Examples of isospectral orbifolds with "interesting" features

